山地地形排水格局和溢流评估的摄影测量技术和无人机- Hatta/UAE

S. Al-Mansoori, R. Al-Ruzouq, Diena Al Dogom, Meera Al Shamsi, Alya Al Mazzm, N. Aburaed
{"title":"山地地形排水格局和溢流评估的摄影测量技术和无人机- Hatta/UAE","authors":"S. Al-Mansoori, R. Al-Ruzouq, Diena Al Dogom, Meera Al Shamsi, Alya Al Mazzm, N. Aburaed","doi":"10.1109/IGARSS.2019.8898151","DOIUrl":null,"url":null,"abstract":"Accurate and precise spatial hydrologic information is essential for effective management of natural resources, planning, and disaster response. Very high-resolution images and precise digital elevation models (DEMs) are crucial to accurately predict overflow in urban and mountainous regions; however, available course resolution DEMs with insufficient details cannot provide reliable overflow models. In this context, unmanned aerial vehicles (UAVs) offer a competitive alternative over satellites or airplanes and provide high spatial details essential for significant improvement of hydrological modeling. In this study, photogrammetric processing that includes stereo images captured via a fixed-wing drone were processed to generate a high-resolution DEM for the area surrounding the Hatta Dam in the United Arab Emirates. Three levels of details were introduced: data collection, photogrammetric processing, and hydrologic modeling. This study determined that flow modeling based on the UAV DEMs resulted in accurate hydrological modeling.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"82 1","pages":"951-954"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Photogrammetric Techniques and UAV for Drainage Pattern and Overflow Assessment in Mountainous Terrains - Hatta/UAE\",\"authors\":\"S. Al-Mansoori, R. Al-Ruzouq, Diena Al Dogom, Meera Al Shamsi, Alya Al Mazzm, N. Aburaed\",\"doi\":\"10.1109/IGARSS.2019.8898151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and precise spatial hydrologic information is essential for effective management of natural resources, planning, and disaster response. Very high-resolution images and precise digital elevation models (DEMs) are crucial to accurately predict overflow in urban and mountainous regions; however, available course resolution DEMs with insufficient details cannot provide reliable overflow models. In this context, unmanned aerial vehicles (UAVs) offer a competitive alternative over satellites or airplanes and provide high spatial details essential for significant improvement of hydrological modeling. In this study, photogrammetric processing that includes stereo images captured via a fixed-wing drone were processed to generate a high-resolution DEM for the area surrounding the Hatta Dam in the United Arab Emirates. Three levels of details were introduced: data collection, photogrammetric processing, and hydrologic modeling. This study determined that flow modeling based on the UAV DEMs resulted in accurate hydrological modeling.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"82 1\",\"pages\":\"951-954\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8898151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

准确、精确的空间水文信息对有效管理自然资源、规划和灾害应对至关重要。非常高分辨率的图像和精确的数字高程模型(dem)是准确预测城市和山区溢流的关键;然而,现有的航向分辨率dem在细节不足的情况下无法提供可靠的溢出模型。在这种情况下,无人驾驶飞行器(uav)提供了比卫星或飞机更有竞争力的替代方案,并为显著改进水文建模提供了必要的高空间细节。在这项研究中,摄影测量处理包括通过固定翼无人机捕获的立体图像,以生成阿拉伯联合酋长国哈达大坝周围地区的高分辨率DEM。详细介绍了三个层次的细节:数据收集、摄影测量处理和水文建模。本研究确定了基于无人机dem的流量建模可以实现准确的水文建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photogrammetric Techniques and UAV for Drainage Pattern and Overflow Assessment in Mountainous Terrains - Hatta/UAE
Accurate and precise spatial hydrologic information is essential for effective management of natural resources, planning, and disaster response. Very high-resolution images and precise digital elevation models (DEMs) are crucial to accurately predict overflow in urban and mountainous regions; however, available course resolution DEMs with insufficient details cannot provide reliable overflow models. In this context, unmanned aerial vehicles (UAVs) offer a competitive alternative over satellites or airplanes and provide high spatial details essential for significant improvement of hydrological modeling. In this study, photogrammetric processing that includes stereo images captured via a fixed-wing drone were processed to generate a high-resolution DEM for the area surrounding the Hatta Dam in the United Arab Emirates. Three levels of details were introduced: data collection, photogrammetric processing, and hydrologic modeling. This study determined that flow modeling based on the UAV DEMs resulted in accurate hydrological modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1