Qizhuang Cen, Tengfei Hao, Hao Ding, Shanhong Guan, Zhiqiang Qin, Kun Xu, Yitang Dai, Ming Li
{"title":"微波光子成像机","authors":"Qizhuang Cen, Tengfei Hao, Hao Ding, Shanhong Guan, Zhiqiang Qin, Kun Xu, Yitang Dai, Ming Li","doi":"10.21203/rs.3.rs-79539/v1","DOIUrl":null,"url":null,"abstract":"\n Ising machines based on analog systems have the potential of acceleration in solving ubiquitous combinatorial optimization problems. Although some artificial spins to support large-scale Ising machine is reported, e.g. superconducting qubits in quantum annealers and short optical pulses in coherent Ising machines, the spin coherence is fragile due to the ultra-low equivalent temperature or optical phase sensitivity. In this paper, we propose to use short microwave pulses generated from an optoelectronic parametric oscillator as the spins to implement the Ising machine with large scale and also high coherence under room temperature. The proposed machine supports 10,000 spins, and the high coherence leads to accurate computation. Moreover, the Ising machine is highly compatible with high-speed electronic devices for programmability, paving a low-cost, accurate, and easy-to-implement way toward to solve real-world optimization problems.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Microwave Photonic Ising Machine\",\"authors\":\"Qizhuang Cen, Tengfei Hao, Hao Ding, Shanhong Guan, Zhiqiang Qin, Kun Xu, Yitang Dai, Ming Li\",\"doi\":\"10.21203/rs.3.rs-79539/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Ising machines based on analog systems have the potential of acceleration in solving ubiquitous combinatorial optimization problems. Although some artificial spins to support large-scale Ising machine is reported, e.g. superconducting qubits in quantum annealers and short optical pulses in coherent Ising machines, the spin coherence is fragile due to the ultra-low equivalent temperature or optical phase sensitivity. In this paper, we propose to use short microwave pulses generated from an optoelectronic parametric oscillator as the spins to implement the Ising machine with large scale and also high coherence under room temperature. The proposed machine supports 10,000 spins, and the high coherence leads to accurate computation. Moreover, the Ising machine is highly compatible with high-speed electronic devices for programmability, paving a low-cost, accurate, and easy-to-implement way toward to solve real-world optimization problems.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-79539/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-79539/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ising machines based on analog systems have the potential of acceleration in solving ubiquitous combinatorial optimization problems. Although some artificial spins to support large-scale Ising machine is reported, e.g. superconducting qubits in quantum annealers and short optical pulses in coherent Ising machines, the spin coherence is fragile due to the ultra-low equivalent temperature or optical phase sensitivity. In this paper, we propose to use short microwave pulses generated from an optoelectronic parametric oscillator as the spins to implement the Ising machine with large scale and also high coherence under room temperature. The proposed machine supports 10,000 spins, and the high coherence leads to accurate computation. Moreover, the Ising machine is highly compatible with high-speed electronic devices for programmability, paving a low-cost, accurate, and easy-to-implement way toward to solve real-world optimization problems.