过程数据质量:过程挖掘的真正前沿

IF 1.5 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Journal of Data and Information Quality Pub Date : 2023-08-23 DOI:10.1145/3613247
A. T. Ter Hofstede, A. Koschmider, Andrea Marrella, R. Andrews, D. Fischer, Sareh Sadeghianasl, M. Wynn, M. Comuzzi, Jochen De Weerdt, Kanika Goel, Niels Martin, P. Soffer
{"title":"过程数据质量:过程挖掘的真正前沿","authors":"A. T. Ter Hofstede, A. Koschmider, Andrea Marrella, R. Andrews, D. Fischer, Sareh Sadeghianasl, M. Wynn, M. Comuzzi, Jochen De Weerdt, Kanika Goel, Niels Martin, P. Soffer","doi":"10.1145/3613247","DOIUrl":null,"url":null,"abstract":"Since its emergence over two decades ago, process mining has flourished as a discipline, with numerous contributions to its theory, widespread practical applications, and mature support by commercial tooling environments. However, its potential for significant organisational impact is hampered by poor quality event data. Process mining starts with the acquisition and preparation of event data coming from different data sources. These are then transformed into event logs, consisting of process execution traces including multiple events. In real-life scenarios, event logs suffer from significant data quality problems, which must be recognised and effectively resolved for obtaining meaningful insights from process mining analysis. Despite its importance, the topic of data quality in process mining has received limited attention. In this paper, we discuss the emerging challenges related to process-data quality from both a research and practical point of view. Additionally, we present a corresponding research agenda with key research directions.","PeriodicalId":44355,"journal":{"name":"ACM Journal of Data and Information Quality","volume":"19 1","pages":"1 - 21"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process-Data Quality: The True Frontier of Process Mining\",\"authors\":\"A. T. Ter Hofstede, A. Koschmider, Andrea Marrella, R. Andrews, D. Fischer, Sareh Sadeghianasl, M. Wynn, M. Comuzzi, Jochen De Weerdt, Kanika Goel, Niels Martin, P. Soffer\",\"doi\":\"10.1145/3613247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since its emergence over two decades ago, process mining has flourished as a discipline, with numerous contributions to its theory, widespread practical applications, and mature support by commercial tooling environments. However, its potential for significant organisational impact is hampered by poor quality event data. Process mining starts with the acquisition and preparation of event data coming from different data sources. These are then transformed into event logs, consisting of process execution traces including multiple events. In real-life scenarios, event logs suffer from significant data quality problems, which must be recognised and effectively resolved for obtaining meaningful insights from process mining analysis. Despite its importance, the topic of data quality in process mining has received limited attention. In this paper, we discuss the emerging challenges related to process-data quality from both a research and practical point of view. Additionally, we present a corresponding research agenda with key research directions.\",\"PeriodicalId\":44355,\"journal\":{\"name\":\"ACM Journal of Data and Information Quality\",\"volume\":\"19 1\",\"pages\":\"1 - 21\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Journal of Data and Information Quality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3613247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal of Data and Information Quality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3613247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

自二十多年前出现以来,过程挖掘作为一门学科蓬勃发展,对其理论做出了许多贡献,广泛的实际应用,并得到了商业工具环境的成熟支持。然而,它对组织产生重大影响的潜力受到低质量事件数据的阻碍。流程挖掘从获取和准备来自不同数据源的事件数据开始。然后将它们转换为事件日志,由包含多个事件的流程执行跟踪组成。在现实场景中,事件日志存在严重的数据质量问题,必须识别并有效解决这些问题,才能从过程挖掘分析中获得有意义的见解。尽管过程挖掘中的数据质量问题很重要,但其受到的关注却很少。在本文中,我们从研究和实践的角度讨论了与过程数据质量相关的新挑战。此外,我们还提出了相应的研究议程和重点研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Process-Data Quality: The True Frontier of Process Mining
Since its emergence over two decades ago, process mining has flourished as a discipline, with numerous contributions to its theory, widespread practical applications, and mature support by commercial tooling environments. However, its potential for significant organisational impact is hampered by poor quality event data. Process mining starts with the acquisition and preparation of event data coming from different data sources. These are then transformed into event logs, consisting of process execution traces including multiple events. In real-life scenarios, event logs suffer from significant data quality problems, which must be recognised and effectively resolved for obtaining meaningful insights from process mining analysis. Despite its importance, the topic of data quality in process mining has received limited attention. In this paper, we discuss the emerging challenges related to process-data quality from both a research and practical point of view. Additionally, we present a corresponding research agenda with key research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Journal of Data and Information Quality
ACM Journal of Data and Information Quality COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.10
自引率
4.80%
发文量
0
期刊最新文献
Text2EL+: Expert Guided Event Log Enrichment using Unstructured Text A Catalog of Consumer IoT Device Characteristics for Data Quality Estimation AI explainibility and acceptance; a case study for underwater mine hunting Data quality assessment through a preference model Editorial: Special Issue on Quality Aspects of Data Preparation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1