鹰嘴豆内生细菌PGPMs的鉴定及其对鹰嘴豆干腐病的拮抗潜力

Q4 Agricultural and Biological Sciences Journal of Biological Control Pub Date : 2023-08-08 DOI:10.18311/jbc/2022/32473
G. Sunkad, Meghana S. Patil, Ranjana Joshi
{"title":"鹰嘴豆内生细菌PGPMs的鉴定及其对鹰嘴豆干腐病的拮抗潜力","authors":"G. Sunkad, Meghana S. Patil, Ranjana Joshi","doi":"10.18311/jbc/2022/32473","DOIUrl":null,"url":null,"abstract":"Chickpea (Cicer arietinum L.) is grown in more than 50 countries. India is the largest chickpea-producing country accounting for 64% of the global chickpea production. However, the production is contrained by the dry root rot disease caused by Rhizoctonia bataticola. Considering this problem, the investigation was carried out to isolate, characterize and the antagonistic potential of indigenous endophytic PGPMs for one of the components in the integrated management of dry root rot of chickpeas in eco-friendly manner. Hence, the isolation of thirty endophytic PGPMs was carried from chickpea by using the spread plate technique. The cultural characters and Gram’s staining reaction confirmed that the endophytic PGPMs isolated from chickpea plant tissues were bacteria. Among thirty bacterial strains, eight showed more than 50% of mycelial inhibition of the pathogen. Out of eight strains, five highly superior strains were selected and subjected for 16S rDNA gene sequencing using the universal primers (16Sr DNA F and 16Sr DNA R), which produced amplified products of size 1500 bp. nBLAST results of 16S rDNA gene sequence revealed that all the endophytic bacterial PGPMs showed homology with genus Bacillus but with different species. The five potential strains namely, BEPGPM-5, BEPGPM-9, BEPGPM-27, BEPGPM-28, and BEPGPM-30 were identified and confirmed as B. tropicus, B. pacificus, B. cereus, B. subtilis, respectively, based on molecular technique.","PeriodicalId":15188,"journal":{"name":"Journal of Biological Control","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indigenous bacterial endophytic PGPMs of chickpea: Characterization and hidden antagonistic potential against Rhizoctonia bataticola causing dry root rot of chickpea\",\"authors\":\"G. Sunkad, Meghana S. Patil, Ranjana Joshi\",\"doi\":\"10.18311/jbc/2022/32473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chickpea (Cicer arietinum L.) is grown in more than 50 countries. India is the largest chickpea-producing country accounting for 64% of the global chickpea production. However, the production is contrained by the dry root rot disease caused by Rhizoctonia bataticola. Considering this problem, the investigation was carried out to isolate, characterize and the antagonistic potential of indigenous endophytic PGPMs for one of the components in the integrated management of dry root rot of chickpeas in eco-friendly manner. Hence, the isolation of thirty endophytic PGPMs was carried from chickpea by using the spread plate technique. The cultural characters and Gram’s staining reaction confirmed that the endophytic PGPMs isolated from chickpea plant tissues were bacteria. Among thirty bacterial strains, eight showed more than 50% of mycelial inhibition of the pathogen. Out of eight strains, five highly superior strains were selected and subjected for 16S rDNA gene sequencing using the universal primers (16Sr DNA F and 16Sr DNA R), which produced amplified products of size 1500 bp. nBLAST results of 16S rDNA gene sequence revealed that all the endophytic bacterial PGPMs showed homology with genus Bacillus but with different species. The five potential strains namely, BEPGPM-5, BEPGPM-9, BEPGPM-27, BEPGPM-28, and BEPGPM-30 were identified and confirmed as B. tropicus, B. pacificus, B. cereus, B. subtilis, respectively, based on molecular technique.\",\"PeriodicalId\":15188,\"journal\":{\"name\":\"Journal of Biological Control\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/jbc/2022/32473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/jbc/2022/32473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

鹰嘴豆(Cicer arietinum L.)在50多个国家种植。印度是最大的鹰嘴豆生产国,占全球鹰嘴豆产量的64%。然而,由于bataticola根核菌引起的干腐病,生产受到制约。针对这一问题,本研究对鹰嘴豆干根腐病生态综合治理中本土内生植物PGPMs的分离、鉴定及其拮抗潜力进行了研究。为此,采用平板扩散技术从鹰嘴豆中分离了30株内生PGPMs。培养特性和革兰氏染色反应证实从鹰嘴豆植物组织中分离到的内生PGPMs为细菌。在30株细菌中,有8株对病原菌的菌丝抑制率超过50%。从8株菌株中选择5株高度优良的菌株,使用通用引物(16Sr DNA F和16Sr DNA R)进行16S rDNA基因测序,扩增产物大小为1500bp。16S rDNA基因序列nBLAST分析结果显示,所有内生细菌PGPMs均与芽孢杆菌属同源,但属不同。利用分子技术鉴定出5株潜在菌株BEPGPM-5、BEPGPM-9、BEPGPM-27、BEPGPM-28和BEPGPM-30分别为热带芽孢杆菌、太平洋芽孢杆菌、蜡样芽孢杆菌和枯草芽孢杆菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indigenous bacterial endophytic PGPMs of chickpea: Characterization and hidden antagonistic potential against Rhizoctonia bataticola causing dry root rot of chickpea
Chickpea (Cicer arietinum L.) is grown in more than 50 countries. India is the largest chickpea-producing country accounting for 64% of the global chickpea production. However, the production is contrained by the dry root rot disease caused by Rhizoctonia bataticola. Considering this problem, the investigation was carried out to isolate, characterize and the antagonistic potential of indigenous endophytic PGPMs for one of the components in the integrated management of dry root rot of chickpeas in eco-friendly manner. Hence, the isolation of thirty endophytic PGPMs was carried from chickpea by using the spread plate technique. The cultural characters and Gram’s staining reaction confirmed that the endophytic PGPMs isolated from chickpea plant tissues were bacteria. Among thirty bacterial strains, eight showed more than 50% of mycelial inhibition of the pathogen. Out of eight strains, five highly superior strains were selected and subjected for 16S rDNA gene sequencing using the universal primers (16Sr DNA F and 16Sr DNA R), which produced amplified products of size 1500 bp. nBLAST results of 16S rDNA gene sequence revealed that all the endophytic bacterial PGPMs showed homology with genus Bacillus but with different species. The five potential strains namely, BEPGPM-5, BEPGPM-9, BEPGPM-27, BEPGPM-28, and BEPGPM-30 were identified and confirmed as B. tropicus, B. pacificus, B. cereus, B. subtilis, respectively, based on molecular technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Control
Journal of Biological Control Agricultural and Biological Sciences-Insect Science
CiteScore
0.50
自引率
0.00%
发文量
10
期刊最新文献
Novel records of parasitoids targeting fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), in rice-corn-based cropping systems in the Philippines Diversity of phytophagous and predatory mites in vegetable crops in Himachal Pradesh, India Apivectoring: Harnessing pollinators for sustainable crop protection and pollination In vitro evaluation of microencapsulated Bacillus thuringiensis (Berliner) formulation against Helicoverpa armigera (Hubner) Evaluating the efficiency of silver nanoparticles prepared using Pseudomonas fluorescens and Bacillus thuringiensis subsp. tenebrionis in controlling eggs and adults of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1