基于LTPP数据的沥青路面劣化人工神经网络模型的建立

N. Solatifar, S. M. Lavasani
{"title":"基于LTPP数据的沥青路面劣化人工神经网络模型的建立","authors":"N. Solatifar, S. M. Lavasani","doi":"10.22075/JRCE.2019.17120.1328","DOIUrl":null,"url":null,"abstract":"Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in pavement evaluation. High correlation between International Roughness Index (IRI) and user comfort led to modeling pavement deterioration based on IRI during PMS history. On the other hand, in recent years Artificial Neural Network (ANN) which is a valuable tool of soft computing is used in pavement modeling, widely. This study assessed the development of an ANN pavement deterioration model based on IRI using Back-Propagation Neural Networks (BPNN) technique. The Long-Term Pavement Performance (LTPP) data was extracted from two General Pavement Study (GPS) sections including GPS-1 and GPS-2. After training and testing the developed model, results were compared with a polynomial regression model. Results showed that predicted IRI values with developed ANN model have a good correlation with measured values rather than the polynomial regression model for both GPS-1 and GPS-2 sections.","PeriodicalId":52415,"journal":{"name":"Journal of Rehabilitation in Civil Engineering","volume":"49 1","pages":"121-132"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Development of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data\",\"authors\":\"N. Solatifar, S. M. Lavasani\",\"doi\":\"10.22075/JRCE.2019.17120.1328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in pavement evaluation. High correlation between International Roughness Index (IRI) and user comfort led to modeling pavement deterioration based on IRI during PMS history. On the other hand, in recent years Artificial Neural Network (ANN) which is a valuable tool of soft computing is used in pavement modeling, widely. This study assessed the development of an ANN pavement deterioration model based on IRI using Back-Propagation Neural Networks (BPNN) technique. The Long-Term Pavement Performance (LTPP) data was extracted from two General Pavement Study (GPS) sections including GPS-1 and GPS-2. After training and testing the developed model, results were compared with a polynomial regression model. Results showed that predicted IRI values with developed ANN model have a good correlation with measured values rather than the polynomial regression model for both GPS-1 and GPS-2 sections.\",\"PeriodicalId\":52415,\"journal\":{\"name\":\"Journal of Rehabilitation in Civil Engineering\",\"volume\":\"49 1\",\"pages\":\"121-132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rehabilitation in Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/JRCE.2019.17120.1328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation in Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/JRCE.2019.17120.1328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7

摘要

路面劣化模型是路面管理系统(PMS)的重要组成部分。这些模型基于路面的存在条件、导致路面劣化的参数以及各种养护和修复政策的含义来预测未来路面状况。这些模型大多基于粗糙度,而粗糙度是路面评价中最重要的指标之一。国际粗糙度指数(IRI)与用户舒适度之间的高度相关性使得基于IRI的PMS路面劣化建模成为可能。另一方面,近年来,人工神经网络作为一种有价值的软计算工具在路面建模中得到了广泛的应用。本研究利用反向传播神经网络(BPNN)技术,评估了基于IRI的人工神经网络路面劣化模型的发展。长期路面性能(LTPP)数据提取自两个通用路面研究(GPS)部分,包括GPS-1和GPS-2。经过对模型的训练和检验,结果与多项式回归模型进行了比较。结果表明,在GPS-1和GPS-2剖面上,利用所建立的人工神经网络模型预测的IRI值与实测值的相关性较好,与多项式回归模型的相关性较差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data
Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in pavement evaluation. High correlation between International Roughness Index (IRI) and user comfort led to modeling pavement deterioration based on IRI during PMS history. On the other hand, in recent years Artificial Neural Network (ANN) which is a valuable tool of soft computing is used in pavement modeling, widely. This study assessed the development of an ANN pavement deterioration model based on IRI using Back-Propagation Neural Networks (BPNN) technique. The Long-Term Pavement Performance (LTPP) data was extracted from two General Pavement Study (GPS) sections including GPS-1 and GPS-2. After training and testing the developed model, results were compared with a polynomial regression model. Results showed that predicted IRI values with developed ANN model have a good correlation with measured values rather than the polynomial regression model for both GPS-1 and GPS-2 sections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Rehabilitation in Civil Engineering
Journal of Rehabilitation in Civil Engineering Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Damage Sensitive-Stories of RC and Steel Frames under Critical Mainshock-Aftershock Ground Motions Evaluation of Intermediate Reinforced Concrete Moment Frame subjected to Truck collision Damage Detection in Prestressed Concrete Slabs Using Wavelet Analysis of Vibration Responses in the Time Domain Rehabilitation of Corroded Reinforced Concrete Elements by Rebar Replacement Risk assessment and challenges faced in repairs and rehabilitation of dilapidated buildings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1