{"title":"分布式避碰编队控制:一种基于速度障碍的方法","authors":"Yifan Hu, Han Yu, Yang Zhong, Yuezu Lv","doi":"10.1109/SSCI44817.2019.9003159","DOIUrl":null,"url":null,"abstract":"This paper proposes a discrete-time algorithm for formation control of multi-agent systems with collision avoidance, where the agents’ velocity and steering constraints are also considered. To ensure the collision avoidance, the velocity obstacle and reciprocal velocity obstacle methods are introduced to modify the distributed formation algorithm, where each agent uses velocity obstacle method to avoid collision with obstacles, and reciprocal velocity obstacle method to avoid collision with other agents. In this sense, each agent has the ability to pass through complex obstacle environments by autonomously changing prefer velocity. Simulation results show that the proposed algorithm can achieve formation task and meanwhile guarantee collision avoidance.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"27 1","pages":"1994-2000"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Distributed Collision-Avoidance Formation Control: A Velocity Obstacle-Based Approach\",\"authors\":\"Yifan Hu, Han Yu, Yang Zhong, Yuezu Lv\",\"doi\":\"10.1109/SSCI44817.2019.9003159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a discrete-time algorithm for formation control of multi-agent systems with collision avoidance, where the agents’ velocity and steering constraints are also considered. To ensure the collision avoidance, the velocity obstacle and reciprocal velocity obstacle methods are introduced to modify the distributed formation algorithm, where each agent uses velocity obstacle method to avoid collision with obstacles, and reciprocal velocity obstacle method to avoid collision with other agents. In this sense, each agent has the ability to pass through complex obstacle environments by autonomously changing prefer velocity. Simulation results show that the proposed algorithm can achieve formation task and meanwhile guarantee collision avoidance.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"27 1\",\"pages\":\"1994-2000\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9003159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed Collision-Avoidance Formation Control: A Velocity Obstacle-Based Approach
This paper proposes a discrete-time algorithm for formation control of multi-agent systems with collision avoidance, where the agents’ velocity and steering constraints are also considered. To ensure the collision avoidance, the velocity obstacle and reciprocal velocity obstacle methods are introduced to modify the distributed formation algorithm, where each agent uses velocity obstacle method to avoid collision with obstacles, and reciprocal velocity obstacle method to avoid collision with other agents. In this sense, each agent has the ability to pass through complex obstacle environments by autonomously changing prefer velocity. Simulation results show that the proposed algorithm can achieve formation task and meanwhile guarantee collision avoidance.