Marco Pinto Corujo, Pavel Michal, Rod Wesson, D. P. Amarasinghe, A. Rodger, N. Chmel
{"title":"拉曼光谱中蛋白质样品中杂质背景荧光的还原","authors":"Marco Pinto Corujo, Pavel Michal, Rod Wesson, D. P. Amarasinghe, A. Rodger, N. Chmel","doi":"10.1155/2022/1928091","DOIUrl":null,"url":null,"abstract":"Background fluorescence remains the biggest challenge in Raman spectroscopy because of the consequent curvature of the baseline and the degradation of the signal-to-noise ratio of the Raman signal. While the concentrations of the fluorophore impurities are usually too low to be detected by other analytical methods, they are often sufficient to prevent Raman data collection. Among the different existing methods to remove the fluorescence signal, photobleaching remains the most popular due to its simplicity. However, using the spectrometer laser to photobleach is far from optimal. Most commercially available instruments have little or no choice of wavelength, and their output powers are in many cases not suitable for highly fluorescent samples such as those from biological systems (e.g., proteins). In this article, we assess practical aspects of photobleaching such as the apparent reversibility of the process and the effect of convection currents due to what we speculate to be temperature gradients across the bulk of the solution. We also introduce an affordable custom made external photobleaching unit with a choice of excitation wavelength and demonstrate its viability with a highly fluorescent bovine serum albumin protein solution, which had proved most challenging for Raman spectroscopy as it contained ∼10% w/w impurities.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reduction of Background Fluorescence from Impurities in Protein Samples for Raman Spectroscopy\",\"authors\":\"Marco Pinto Corujo, Pavel Michal, Rod Wesson, D. P. Amarasinghe, A. Rodger, N. Chmel\",\"doi\":\"10.1155/2022/1928091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background fluorescence remains the biggest challenge in Raman spectroscopy because of the consequent curvature of the baseline and the degradation of the signal-to-noise ratio of the Raman signal. While the concentrations of the fluorophore impurities are usually too low to be detected by other analytical methods, they are often sufficient to prevent Raman data collection. Among the different existing methods to remove the fluorescence signal, photobleaching remains the most popular due to its simplicity. However, using the spectrometer laser to photobleach is far from optimal. Most commercially available instruments have little or no choice of wavelength, and their output powers are in many cases not suitable for highly fluorescent samples such as those from biological systems (e.g., proteins). In this article, we assess practical aspects of photobleaching such as the apparent reversibility of the process and the effect of convection currents due to what we speculate to be temperature gradients across the bulk of the solution. We also introduce an affordable custom made external photobleaching unit with a choice of excitation wavelength and demonstrate its viability with a highly fluorescent bovine serum albumin protein solution, which had proved most challenging for Raman spectroscopy as it contained ∼10% w/w impurities.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1928091\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/1928091","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Reduction of Background Fluorescence from Impurities in Protein Samples for Raman Spectroscopy
Background fluorescence remains the biggest challenge in Raman spectroscopy because of the consequent curvature of the baseline and the degradation of the signal-to-noise ratio of the Raman signal. While the concentrations of the fluorophore impurities are usually too low to be detected by other analytical methods, they are often sufficient to prevent Raman data collection. Among the different existing methods to remove the fluorescence signal, photobleaching remains the most popular due to its simplicity. However, using the spectrometer laser to photobleach is far from optimal. Most commercially available instruments have little or no choice of wavelength, and their output powers are in many cases not suitable for highly fluorescent samples such as those from biological systems (e.g., proteins). In this article, we assess practical aspects of photobleaching such as the apparent reversibility of the process and the effect of convection currents due to what we speculate to be temperature gradients across the bulk of the solution. We also introduce an affordable custom made external photobleaching unit with a choice of excitation wavelength and demonstrate its viability with a highly fluorescent bovine serum albumin protein solution, which had proved most challenging for Raman spectroscopy as it contained ∼10% w/w impurities.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.