通过单细胞 RNA 测序分析揭示新型双阴性前列腺癌亚型

Q4 Decision Sciences Mathematica Applicanda Pub Date : 2024-05-02 DOI:10.1101/2023.08.11.553009
Siyuan Cheng, Lin Li, Yunshin Yeh, Yingli Shi, Omar Franco, Eva Corey, Xiuping Yu
{"title":"通过单细胞 RNA 测序分析揭示新型双阴性前列腺癌亚型","authors":"Siyuan Cheng, Lin Li, Yunshin Yeh, Yingli Shi, Omar Franco, Eva Corey, Xiuping Yu","doi":"10.1101/2023.08.11.553009","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in single-cell RNA sequencing (scRNAseq) have facilitated the discovery of previously unrecognized subtypes within prostate cancer (PCa), offering new insights into disease heterogeneity and progression. In this study, we integrated scRNAseq data from multiple studies, comprising both publicly available cohorts and data generated by our research team, and established the HuPSA (Human Prostate Single cell Atlas) and the MoPSA (Mouse Prostate Single cell Atlas) datasets. Through comprehensive analysis, we identified two novel double-negative PCa populations: KRT7 cells characterized by elevated KRT7 expression, and progenitor-like cells marked by SOX2 and FOXA2 expression, distinct from NEPCa, and displaying stem/progenitor features. Furthermore, HuPSA-based deconvolution allowed for the re-classification of human PCa specimens, validating the presence of these novel subtypes. Leveraging these findings, we developed a user-friendly web application, \"HuPSA-MoPSA\" (https://pcatools.shinyapps.io/HuPSA-MoPSA/), for visualizing gene expression across all newly-established datasets. Our study provides comprehensive tools for PCa research and uncovers novel cancer subtypes that can inform clinical diagnosis and treatment strategies.</p>","PeriodicalId":36622,"journal":{"name":"Mathematica Applicanda","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092429/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unveiling Novel Double-Negative Prostate Cancer Subtypes Through Single-Cell RNA Sequencing Analysis.\",\"authors\":\"Siyuan Cheng, Lin Li, Yunshin Yeh, Yingli Shi, Omar Franco, Eva Corey, Xiuping Yu\",\"doi\":\"10.1101/2023.08.11.553009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advancements in single-cell RNA sequencing (scRNAseq) have facilitated the discovery of previously unrecognized subtypes within prostate cancer (PCa), offering new insights into disease heterogeneity and progression. In this study, we integrated scRNAseq data from multiple studies, comprising both publicly available cohorts and data generated by our research team, and established the HuPSA (Human Prostate Single cell Atlas) and the MoPSA (Mouse Prostate Single cell Atlas) datasets. Through comprehensive analysis, we identified two novel double-negative PCa populations: KRT7 cells characterized by elevated KRT7 expression, and progenitor-like cells marked by SOX2 and FOXA2 expression, distinct from NEPCa, and displaying stem/progenitor features. Furthermore, HuPSA-based deconvolution allowed for the re-classification of human PCa specimens, validating the presence of these novel subtypes. Leveraging these findings, we developed a user-friendly web application, \\\"HuPSA-MoPSA\\\" (https://pcatools.shinyapps.io/HuPSA-MoPSA/), for visualizing gene expression across all newly-established datasets. Our study provides comprehensive tools for PCa research and uncovers novel cancer subtypes that can inform clinical diagnosis and treatment strategies.</p>\",\"PeriodicalId\":36622,\"journal\":{\"name\":\"Mathematica Applicanda\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092429/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Applicanda\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.08.11.553009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Applicanda","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.08.11.553009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

单细胞 RNA 测序(scRNAseq)技术的最新进展促进了前列腺癌(PCa)中以前未被发现的亚型的发现,为了解疾病的异质性和进展提供了新的视角。在这项研究中,我们整合了多项研究的 scRNAseq 数据,包括公开的队列和我们研究团队生成的数据,并建立了 HuPSA(人前列腺单个细胞图谱)和 MoPSA(鼠前列腺单个细胞图谱)数据集。通过综合分析,我们发现了两种新型双阴性 PCa 群体:KRT7 细胞的特征是 KRT7 表达升高,而祖细胞样细胞的特征是 SOX2 和 FOXA2 表达,它们有别于 NEPCa,显示出干/祖细胞特征。此外,基于 HuPSA 的解卷积技术还能对人类 PCa 标本进行重新分类,从而验证这些新型亚型的存在。利用这些发现,我们开发了一个用户友好型网络应用程序 "HuPSA-MoPSA" ( https://pcatools.shinyapps.io/HuPSA-MoPSA/ ),用于可视化所有新建立数据集的基因表达。我们的研究为 PCa 研究提供了全面的工具,并发现了可为临床诊断和治疗策略提供信息的新型癌症亚型:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling Novel Double-Negative Prostate Cancer Subtypes Through Single-Cell RNA Sequencing Analysis.

Recent advancements in single-cell RNA sequencing (scRNAseq) have facilitated the discovery of previously unrecognized subtypes within prostate cancer (PCa), offering new insights into disease heterogeneity and progression. In this study, we integrated scRNAseq data from multiple studies, comprising both publicly available cohorts and data generated by our research team, and established the HuPSA (Human Prostate Single cell Atlas) and the MoPSA (Mouse Prostate Single cell Atlas) datasets. Through comprehensive analysis, we identified two novel double-negative PCa populations: KRT7 cells characterized by elevated KRT7 expression, and progenitor-like cells marked by SOX2 and FOXA2 expression, distinct from NEPCa, and displaying stem/progenitor features. Furthermore, HuPSA-based deconvolution allowed for the re-classification of human PCa specimens, validating the presence of these novel subtypes. Leveraging these findings, we developed a user-friendly web application, "HuPSA-MoPSA" (https://pcatools.shinyapps.io/HuPSA-MoPSA/), for visualizing gene expression across all newly-established datasets. Our study provides comprehensive tools for PCa research and uncovers novel cancer subtypes that can inform clinical diagnosis and treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica Applicanda
Mathematica Applicanda Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
0.40
自引率
0.00%
发文量
12
期刊最新文献
Unveiling Novel Double-Negative Prostate Cancer Subtypes Through Single-Cell RNA Sequencing Analysis. Revisiting the Nowosiółka skull with RMaCzek A review note on arbitrary precision arithmetic PK/PD model of 6-mercaptopurine treatment in acute leukemia Complex Fibonacci (c,p)- numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1