dbcsp:基于距离的公共空间模式的用户友好R包

R J. Pub Date : 2021-09-02 DOI:10.32614/rj-2022-044
Itsaso Rodríguez-Moreno, I. Irigoien, B. Sierra, C. Arenas
{"title":"dbcsp:基于距离的公共空间模式的用户友好R包","authors":"Itsaso Rodríguez-Moreno, I. Irigoien, B. Sierra, C. Arenas","doi":"10.32614/rj-2022-044","DOIUrl":null,"url":null,"abstract":"Common Spacial Patterns (CSP) is a widely used method to analyse electroencephalography (EEG) data, concerning the supervised classification of brain's activity. More generally, it can be useful to distinguish between multivariate signals recorded during a time span for two different classes. CSP is based on the simultaneous diagonalization of the average covariance matrices of signals from both classes and it allows to project the data into a low-dimensional subspace. Once data are represented in a low-dimensional subspace, a classification step must be carried out. The original CSP method is based on the Euclidean distance between signals and here, we extend it so that it can be applied on any appropriate distance for data at hand. Both, the classical CSP and the new Distance-Based CSP (DB-CSP) are implemented in an R package, called dbcsp.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"135 1","pages":"80-94"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"dbcsp: User-friendly R package for Distance-Based Common Spacial Patterns\",\"authors\":\"Itsaso Rodríguez-Moreno, I. Irigoien, B. Sierra, C. Arenas\",\"doi\":\"10.32614/rj-2022-044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Common Spacial Patterns (CSP) is a widely used method to analyse electroencephalography (EEG) data, concerning the supervised classification of brain's activity. More generally, it can be useful to distinguish between multivariate signals recorded during a time span for two different classes. CSP is based on the simultaneous diagonalization of the average covariance matrices of signals from both classes and it allows to project the data into a low-dimensional subspace. Once data are represented in a low-dimensional subspace, a classification step must be carried out. The original CSP method is based on the Euclidean distance between signals and here, we extend it so that it can be applied on any appropriate distance for data at hand. Both, the classical CSP and the new Distance-Based CSP (DB-CSP) are implemented in an R package, called dbcsp.\",\"PeriodicalId\":20974,\"journal\":{\"name\":\"R J.\",\"volume\":\"135 1\",\"pages\":\"80-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2022-044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2022-044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

共同空间模式(CSP)是一种广泛应用于脑电图数据分析的方法,涉及脑活动的监督分类。更一般地说,它可以用于区分在两个不同类别的时间跨度内记录的多变量信号。CSP基于两类信号的平均协方差矩阵的同时对角化,它允许将数据投影到低维子空间中。一旦数据在低维子空间中表示,就必须执行分类步骤。原来的CSP方法是基于信号之间的欧几里得距离,在这里,我们扩展了它,使它可以应用于任何适当的距离的数据。经典的CSP和新的基于距离的CSP (DB-CSP)都是在一个名为dbcsp的R包中实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
dbcsp: User-friendly R package for Distance-Based Common Spacial Patterns
Common Spacial Patterns (CSP) is a widely used method to analyse electroencephalography (EEG) data, concerning the supervised classification of brain's activity. More generally, it can be useful to distinguish between multivariate signals recorded during a time span for two different classes. CSP is based on the simultaneous diagonalization of the average covariance matrices of signals from both classes and it allows to project the data into a low-dimensional subspace. Once data are represented in a low-dimensional subspace, a classification step must be carried out. The original CSP method is based on the Euclidean distance between signals and here, we extend it so that it can be applied on any appropriate distance for data at hand. Both, the classical CSP and the new Distance-Based CSP (DB-CSP) are implemented in an R package, called dbcsp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Mosaic Plots in the \pkg{ggplot2} Framework populR: a Package for Population Downscaling in R Making Provenance Work for You SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1