Rhys Goldstein, Kean Walmsley, Jacobo Bibliowicz, Alex Tessier, Simon Breslav, Azam Khan
{"title":"基于网格导航的路径计数","authors":"Rhys Goldstein, Kean Walmsley, Jacobo Bibliowicz, Alex Tessier, Simon Breslav, Azam Khan","doi":"10.1613/jair.1.13544","DOIUrl":null,"url":null,"abstract":"Counting the number of shortest paths on a grid is a simple procedure with close ties to Pascal’s triangle. We show how path counting can be used to select relatively direct grid paths for AI-related applications involving navigation through spatial environments. Typical implementations of Dijkstra’s algorithm and A* prioritize grid moves in an arbitrary manner, producing paths which stray conspicuously far from line-of-sight trajectories. We find that by counting the number of paths which traverse each vertex, then selecting the vertices with the highest counts, one obtains a path that is reasonably direct in practice and can be improved by refining the grid resolution. Central Dijkstra and Central A* are introduced as the basic methods for computing these central grid paths. Theoretical analysis reveals that the proposed grid-based navigation approach is related to an existing grid-based visibility approach, and establishes that central grid paths converge on clear sightlines as the grid spacing approaches zero. A more general property, that central paths converge on direct paths, is formulated as a conjecture.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"21 1","pages":"917-955"},"PeriodicalIF":4.5000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Path Counting for Grid-Based Navigation\",\"authors\":\"Rhys Goldstein, Kean Walmsley, Jacobo Bibliowicz, Alex Tessier, Simon Breslav, Azam Khan\",\"doi\":\"10.1613/jair.1.13544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counting the number of shortest paths on a grid is a simple procedure with close ties to Pascal’s triangle. We show how path counting can be used to select relatively direct grid paths for AI-related applications involving navigation through spatial environments. Typical implementations of Dijkstra’s algorithm and A* prioritize grid moves in an arbitrary manner, producing paths which stray conspicuously far from line-of-sight trajectories. We find that by counting the number of paths which traverse each vertex, then selecting the vertices with the highest counts, one obtains a path that is reasonably direct in practice and can be improved by refining the grid resolution. Central Dijkstra and Central A* are introduced as the basic methods for computing these central grid paths. Theoretical analysis reveals that the proposed grid-based navigation approach is related to an existing grid-based visibility approach, and establishes that central grid paths converge on clear sightlines as the grid spacing approaches zero. A more general property, that central paths converge on direct paths, is formulated as a conjecture.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":\"21 1\",\"pages\":\"917-955\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.13544\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.13544","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Counting the number of shortest paths on a grid is a simple procedure with close ties to Pascal’s triangle. We show how path counting can be used to select relatively direct grid paths for AI-related applications involving navigation through spatial environments. Typical implementations of Dijkstra’s algorithm and A* prioritize grid moves in an arbitrary manner, producing paths which stray conspicuously far from line-of-sight trajectories. We find that by counting the number of paths which traverse each vertex, then selecting the vertices with the highest counts, one obtains a path that is reasonably direct in practice and can be improved by refining the grid resolution. Central Dijkstra and Central A* are introduced as the basic methods for computing these central grid paths. Theoretical analysis reveals that the proposed grid-based navigation approach is related to an existing grid-based visibility approach, and establishes that central grid paths converge on clear sightlines as the grid spacing approaches zero. A more general property, that central paths converge on direct paths, is formulated as a conjecture.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.