{"title":"先进中子源堆三元件堆芯结构的中子分析","authors":"J. Gehin","doi":"10.2172/205866","DOIUrl":null,"url":null,"abstract":"The proposed Advanced Neutron Source (ANS) pre-conceptual design consists of a two-element 330 MW{sub f} nuclear reactor fueled with highly-enriched uranium and is cooled, moderated, and reflected with heavy water. Recently, the ANS design has been changed to a three-element configuration in order to permit a reduction of the enrichment, if required, while maintaining or improving the thermal-hydraulic margins. The core consists of three annular fuel elements composed of involute-shaped fuel plates. Each fuel plate has a thickness of 1.27 mm and consists of a fuel meat region Of U{sub 3}Si{sub 2}-Al (50% enriched in one case that was proposed) and an aluminum filler region between aluminum cladding. The individual plates are separated by a 1.27 mm coolant channel. The three element core has a fuel loading of 31 kg of {sup 235}U which is sufficient for a 17-day fuel cycle. The goal in obtaining a new fuel grading is to maximize important temperature margins. The limits imposed axe: (1) Limit the temperature drop over the cladding oxide layer to less than 119{degrees}C to avoid oxide spallation. (2) Limit the fuel centerline temperature to less than 400{degrees}C to avoid fuel damage. (3) Limit the cladding wall temperature to less than the coolant. incipient-boiling temperature to avoid coolant boiling. Other thermal hydraulic conditions, such as critical heat flux, are also considered.","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1995-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neutronic analysis of three-element core configurations for the Advanced Neutron Source Reactor\",\"authors\":\"J. Gehin\",\"doi\":\"10.2172/205866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed Advanced Neutron Source (ANS) pre-conceptual design consists of a two-element 330 MW{sub f} nuclear reactor fueled with highly-enriched uranium and is cooled, moderated, and reflected with heavy water. Recently, the ANS design has been changed to a three-element configuration in order to permit a reduction of the enrichment, if required, while maintaining or improving the thermal-hydraulic margins. The core consists of three annular fuel elements composed of involute-shaped fuel plates. Each fuel plate has a thickness of 1.27 mm and consists of a fuel meat region Of U{sub 3}Si{sub 2}-Al (50% enriched in one case that was proposed) and an aluminum filler region between aluminum cladding. The individual plates are separated by a 1.27 mm coolant channel. The three element core has a fuel loading of 31 kg of {sup 235}U which is sufficient for a 17-day fuel cycle. The goal in obtaining a new fuel grading is to maximize important temperature margins. The limits imposed axe: (1) Limit the temperature drop over the cladding oxide layer to less than 119{degrees}C to avoid oxide spallation. (2) Limit the fuel centerline temperature to less than 400{degrees}C to avoid fuel damage. (3) Limit the cladding wall temperature to less than the coolant. incipient-boiling temperature to avoid coolant boiling. Other thermal hydraulic conditions, such as critical heat flux, are also considered.\",\"PeriodicalId\":23138,\"journal\":{\"name\":\"Transactions of the American Nuclear Society\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Nuclear Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2172/205866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Nuclear Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/205866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neutronic analysis of three-element core configurations for the Advanced Neutron Source Reactor
The proposed Advanced Neutron Source (ANS) pre-conceptual design consists of a two-element 330 MW{sub f} nuclear reactor fueled with highly-enriched uranium and is cooled, moderated, and reflected with heavy water. Recently, the ANS design has been changed to a three-element configuration in order to permit a reduction of the enrichment, if required, while maintaining or improving the thermal-hydraulic margins. The core consists of three annular fuel elements composed of involute-shaped fuel plates. Each fuel plate has a thickness of 1.27 mm and consists of a fuel meat region Of U{sub 3}Si{sub 2}-Al (50% enriched in one case that was proposed) and an aluminum filler region between aluminum cladding. The individual plates are separated by a 1.27 mm coolant channel. The three element core has a fuel loading of 31 kg of {sup 235}U which is sufficient for a 17-day fuel cycle. The goal in obtaining a new fuel grading is to maximize important temperature margins. The limits imposed axe: (1) Limit the temperature drop over the cladding oxide layer to less than 119{degrees}C to avoid oxide spallation. (2) Limit the fuel centerline temperature to less than 400{degrees}C to avoid fuel damage. (3) Limit the cladding wall temperature to less than the coolant. incipient-boiling temperature to avoid coolant boiling. Other thermal hydraulic conditions, such as critical heat flux, are also considered.