同时胸肌和乳头的MLO乳房x线照片,考虑图像质量的假设

E. García, R. Martí, J. Martí, J. del Riego, Cecilia Aynes, A. Oliver, Oliver Díaz
{"title":"同时胸肌和乳头的MLO乳房x线照片,考虑图像质量的假设","authors":"E. García, R. Martí, J. Martí, J. del Riego, Cecilia Aynes, A. Oliver, Oliver Díaz","doi":"10.1117/12.2625778","DOIUrl":null,"url":null,"abstract":"Feature-based registration algorithms can be used to establish spatial correspondence between two image. Therefore, anatomical landmarks such as the breast boundary, pectoral muscle, nipple, duct and vessels need to be considered. The aim of this paper is to introduce a new approach which combine the pectoral muscle segmentation and nipple location, considering mammography quality assumptions. Pectoral muscle is initialized as a straight line from the top of the image to the nipple level. Afterwards, both pectoral muscle boundary and nipple position are optimized using an iterative approach. The results show that the nipple is localized on the contour of the corresponding area (error smaller than 10 mm) while the Dice’s coefficient of the pectoral muscle segmentation is equal to 0.84 ± 0.12 using a straight line which is improved using a Chan-Vese active contour approach, reaching 0.87 ± 0.13. Our algorithm is easily generalized and portable to a different mammographic system since it barely depends on images statistics -i.e. pixel intensity values-, and is just based on geometrical considerations.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"13 1","pages":"122860E - 122860E-7"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simultaneous pectoral muscle and nipple location in MLO mammograms, considering image quality assumptions\",\"authors\":\"E. García, R. Martí, J. Martí, J. del Riego, Cecilia Aynes, A. Oliver, Oliver Díaz\",\"doi\":\"10.1117/12.2625778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature-based registration algorithms can be used to establish spatial correspondence between two image. Therefore, anatomical landmarks such as the breast boundary, pectoral muscle, nipple, duct and vessels need to be considered. The aim of this paper is to introduce a new approach which combine the pectoral muscle segmentation and nipple location, considering mammography quality assumptions. Pectoral muscle is initialized as a straight line from the top of the image to the nipple level. Afterwards, both pectoral muscle boundary and nipple position are optimized using an iterative approach. The results show that the nipple is localized on the contour of the corresponding area (error smaller than 10 mm) while the Dice’s coefficient of the pectoral muscle segmentation is equal to 0.84 ± 0.12 using a straight line which is improved using a Chan-Vese active contour approach, reaching 0.87 ± 0.13. Our algorithm is easily generalized and portable to a different mammographic system since it barely depends on images statistics -i.e. pixel intensity values-, and is just based on geometrical considerations.\",\"PeriodicalId\":92005,\"journal\":{\"name\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"volume\":\"13 1\",\"pages\":\"122860E - 122860E-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2625778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2625778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于特征的配准算法可用于建立两幅图像之间的空间对应关系。因此,需要考虑乳房边界、胸肌、乳头、导管、血管等解剖标志。本文的目的是介绍一种结合胸肌分割和乳头定位的新方法,考虑乳房x光检查质量的假设。胸肌初始化为从图像顶部到乳头水平的一条直线。然后,采用迭代法对胸肌边界和乳头位置进行优化。结果表明,乳头定位在相应区域的轮廓上(误差小于10 mm),胸肌直线分割的Dice系数为0.84±0.12,经Chan-Vese主动轮廓法改进后达到0.87±0.13。我们的算法很容易推广和移植到不同的乳房x光检查系统,因为它几乎不依赖于图像统计-即像素强度值-而只是基于几何考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous pectoral muscle and nipple location in MLO mammograms, considering image quality assumptions
Feature-based registration algorithms can be used to establish spatial correspondence between two image. Therefore, anatomical landmarks such as the breast boundary, pectoral muscle, nipple, duct and vessels need to be considered. The aim of this paper is to introduce a new approach which combine the pectoral muscle segmentation and nipple location, considering mammography quality assumptions. Pectoral muscle is initialized as a straight line from the top of the image to the nipple level. Afterwards, both pectoral muscle boundary and nipple position are optimized using an iterative approach. The results show that the nipple is localized on the contour of the corresponding area (error smaller than 10 mm) while the Dice’s coefficient of the pectoral muscle segmentation is equal to 0.84 ± 0.12 using a straight line which is improved using a Chan-Vese active contour approach, reaching 0.87 ± 0.13. Our algorithm is easily generalized and portable to a different mammographic system since it barely depends on images statistics -i.e. pixel intensity values-, and is just based on geometrical considerations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness of a U-net model for different image processing types in segmentation of the mammary gland region Lesion detection in contrast enhanced spectral mammography Correspondence between areas causing recall in breast cancer screening and artificial intelligence findings Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge Breast shape estimation and correction in CESM biopsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1