深海嗜热地杆菌高温生物反应器生产耐热α-淀粉酶的生物工艺探索

Tao Jiang, Mengmeng Huang, Hao He, Jian Lu, Xiangshan Zhou, Menghao Cai, Yuanxing Zhang
{"title":"深海嗜热地杆菌高温生物反应器生产耐热α-淀粉酶的生物工艺探索","authors":"Tao Jiang, Mengmeng Huang, Hao He, Jian Lu, Xiangshan Zhou, Menghao Cai, Yuanxing Zhang","doi":"10.1080/10826068.2015.1128444","DOIUrl":null,"url":null,"abstract":"ABSTRACT Geobacillus sp. 4j, a deep-sea high-salt thermophile, was found to produce thermostable α-amylase. In this work, culture medium and conditions were first optimized to enhance the production of thermostable α-amylase by statistical methodologies. The resulting extracellular production was increased by five times and reached 6.40 U/ml. Then, a high-temperature batch culture of the thermophile in a 15 l in-house-designed bioreactor was studied. The results showed that a relatively high dissolved oxygen (600 rpm and 15 l/min) and culture temperature of 60°C facilitated both cell growth and α-amylase production. Thus, an efficient fermentation process was established with initial medium of pH 6.0, culture temperature of 60°C, and dissolved oxygen above 20%. It gave an α-amylase production of 79 U/ml and productivity of 19804 U/l·hr, which were 10.8 and 208 times higher than those in shake flask, respectively. This work is useful for deep-sea high-salt thermophile culture, where efforts are lacking presently.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"48 1","pages":"620 - 627"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bioprocess exploration for thermostable α-amylase production of a deep-sea thermophile Geobacillus sp. in high-temperature bioreactor\",\"authors\":\"Tao Jiang, Mengmeng Huang, Hao He, Jian Lu, Xiangshan Zhou, Menghao Cai, Yuanxing Zhang\",\"doi\":\"10.1080/10826068.2015.1128444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Geobacillus sp. 4j, a deep-sea high-salt thermophile, was found to produce thermostable α-amylase. In this work, culture medium and conditions were first optimized to enhance the production of thermostable α-amylase by statistical methodologies. The resulting extracellular production was increased by five times and reached 6.40 U/ml. Then, a high-temperature batch culture of the thermophile in a 15 l in-house-designed bioreactor was studied. The results showed that a relatively high dissolved oxygen (600 rpm and 15 l/min) and culture temperature of 60°C facilitated both cell growth and α-amylase production. Thus, an efficient fermentation process was established with initial medium of pH 6.0, culture temperature of 60°C, and dissolved oxygen above 20%. It gave an α-amylase production of 79 U/ml and productivity of 19804 U/l·hr, which were 10.8 and 208 times higher than those in shake flask, respectively. This work is useful for deep-sea high-salt thermophile culture, where efforts are lacking presently.\",\"PeriodicalId\":20393,\"journal\":{\"name\":\"Preparative Biochemistry and Biotechnology\",\"volume\":\"48 1\",\"pages\":\"620 - 627\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2015.1128444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10826068.2015.1128444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要:Geobacillus sp. 4j是一种深海高盐嗜热菌,可产生耐热α-淀粉酶。在这项工作中,首先通过统计方法优化培养基和条件,以提高耐热α-淀粉酶的产量。细胞外产量提高了5倍,达到6.40 U/ml。然后,在室内设计的15l生物反应器中对嗜热菌进行了高温间歇培养研究。结果表明,较高的溶解氧(600 rpm和15 l/min)和60℃的培养温度有利于细胞生长和α-淀粉酶的产生。因此,在初始培养基pH为6.0,培养温度为60℃,溶解氧≥20%的条件下,建立了高效的发酵工艺。α-淀粉酶产量为79 U/ml,产率为19804 U/l·hr,分别是摇瓶法的10.8倍和208倍。这项工作对目前缺乏的深海高盐嗜热菌培养具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioprocess exploration for thermostable α-amylase production of a deep-sea thermophile Geobacillus sp. in high-temperature bioreactor
ABSTRACT Geobacillus sp. 4j, a deep-sea high-salt thermophile, was found to produce thermostable α-amylase. In this work, culture medium and conditions were first optimized to enhance the production of thermostable α-amylase by statistical methodologies. The resulting extracellular production was increased by five times and reached 6.40 U/ml. Then, a high-temperature batch culture of the thermophile in a 15 l in-house-designed bioreactor was studied. The results showed that a relatively high dissolved oxygen (600 rpm and 15 l/min) and culture temperature of 60°C facilitated both cell growth and α-amylase production. Thus, an efficient fermentation process was established with initial medium of pH 6.0, culture temperature of 60°C, and dissolved oxygen above 20%. It gave an α-amylase production of 79 U/ml and productivity of 19804 U/l·hr, which were 10.8 and 208 times higher than those in shake flask, respectively. This work is useful for deep-sea high-salt thermophile culture, where efforts are lacking presently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of pretreatment with organic solvent on enzymatic digestibility of cauliflower wastes Selective removal of closely related clipped protein impurities using poly(ethylenimine)- grafted anion-exchange chromatography resin A colorimetric method for the determination of different functional flavonoids using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and peroxidase Optimization of propionic acid production in apple pomace extract with Propionibacterium freudenreichii Optimization of fermented Perilla frutescens seeds for enhancement of gamma-aminobutyric acid and bioactive compounds by Lactobacillus casei TISTR 1500
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1