LB-Index:图像的多分辨率索引结构

Vebjorn Ljosa, Arnab Bhattacharya, Ambuj K. Singh
{"title":"LB-Index:图像的多分辨率索引结构","authors":"Vebjorn Ljosa, Arnab Bhattacharya, Ambuj K. Singh","doi":"10.1109/ICDE.2006.85","DOIUrl":null,"url":null,"abstract":"In many domains, the similarity between two images depends on the spatial locations of their features. The earth mover’s distance (EMD), first proposed by Werman et al. [8], measures such similarity. It yields higher-quality image retrieval results than the Lp-norm, quadratic-form distance, and Jeffrey divergence [6], and has also been used for similarity search on contours [3], melodies [7], and graphs [2].","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"22 1","pages":"144-144"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"LB-Index: A Multi-Resolution Index Structure for Images\",\"authors\":\"Vebjorn Ljosa, Arnab Bhattacharya, Ambuj K. Singh\",\"doi\":\"10.1109/ICDE.2006.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many domains, the similarity between two images depends on the spatial locations of their features. The earth mover’s distance (EMD), first proposed by Werman et al. [8], measures such similarity. It yields higher-quality image retrieval results than the Lp-norm, quadratic-form distance, and Jeffrey divergence [6], and has also been used for similarity search on contours [3], melodies [7], and graphs [2].\",\"PeriodicalId\":6819,\"journal\":{\"name\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"volume\":\"22 1\",\"pages\":\"144-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2006.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在许多领域,两幅图像之间的相似性取决于其特征的空间位置。首先由Werman等人[8]提出的土动器距离(EMD)测量了这种相似性。它比lp范数、二次形式距离和Jeffrey散度[6]产生了更高质量的图像检索结果,也被用于轮廓[3]、旋律[7]和图形[2]的相似性搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LB-Index: A Multi-Resolution Index Structure for Images
In many domains, the similarity between two images depends on the spatial locations of their features. The earth mover’s distance (EMD), first proposed by Werman et al. [8], measures such similarity. It yields higher-quality image retrieval results than the Lp-norm, quadratic-form distance, and Jeffrey divergence [6], and has also been used for similarity search on contours [3], melodies [7], and graphs [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Adaptive Memory Management in Data Stream Systems Revision Processing in a Stream Processing Engine: A High-Level Design SUBSKY: Efficient Computation of Skylines in Subspaces How to Determine a Good Multi-Programming Level for External Scheduling Warehousing and Analyzing Massive RFID Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1