{"title":"卡尔曼观测器的核表示及其相关的基于h矩阵的离散化","authors":"M. Aussal, P. Moireau","doi":"10.1051/cocv/2022071","DOIUrl":null,"url":null,"abstract":"In deterministic estimation, applying a Kalman filter to a dynamical model based on partial differential equations is theoretically seducing but solving the associated Riccati equation leads to a so-called curse of dimensionality for its numerical implementation. In this work, we propose to entirely revisit the theory of Kalman filters for parabolic problems where additional regularity results proves that the Riccati equation solution belongs to the class of Hilbert-Schmidt operators. The regularity of the associated kernel then allows to proceed to the numerical analysis of the Kalman full space-time discretization in adapted norms, hence justifying the implementation of the related Kalman filter numerical algorithm with H-matrices typically developed for integral equations discretization.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":"216 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel representation of Kalman observer and associated H-matrix based discretization\",\"authors\":\"M. Aussal, P. Moireau\",\"doi\":\"10.1051/cocv/2022071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In deterministic estimation, applying a Kalman filter to a dynamical model based on partial differential equations is theoretically seducing but solving the associated Riccati equation leads to a so-called curse of dimensionality for its numerical implementation. In this work, we propose to entirely revisit the theory of Kalman filters for parabolic problems where additional regularity results proves that the Riccati equation solution belongs to the class of Hilbert-Schmidt operators. The regularity of the associated kernel then allows to proceed to the numerical analysis of the Kalman full space-time discretization in adapted norms, hence justifying the implementation of the related Kalman filter numerical algorithm with H-matrices typically developed for integral equations discretization.\",\"PeriodicalId\":50500,\"journal\":{\"name\":\"Esaim-Control Optimisation and Calculus of Variations\",\"volume\":\"216 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Control Optimisation and Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/cocv/2022071\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/cocv/2022071","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Kernel representation of Kalman observer and associated H-matrix based discretization
In deterministic estimation, applying a Kalman filter to a dynamical model based on partial differential equations is theoretically seducing but solving the associated Riccati equation leads to a so-called curse of dimensionality for its numerical implementation. In this work, we propose to entirely revisit the theory of Kalman filters for parabolic problems where additional regularity results proves that the Riccati equation solution belongs to the class of Hilbert-Schmidt operators. The regularity of the associated kernel then allows to proceed to the numerical analysis of the Kalman full space-time discretization in adapted norms, hence justifying the implementation of the related Kalman filter numerical algorithm with H-matrices typically developed for integral equations discretization.
期刊介绍:
ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations.
Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines.
Targeted topics include:
in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory;
in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis;
in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.