Luiz Afonso Marão, Larissa Casteluci, Ricardo V. Godoy, Henrique B. Garcia, D. V. Magalhães, G. Caurin
{"title":"挑战任务中自主轮式机器人的深度强化学习控制:结合视觉和动态传感","authors":"Luiz Afonso Marão, Larissa Casteluci, Ricardo V. Godoy, Henrique B. Garcia, D. V. Magalhães, G. Caurin","doi":"10.1109/ICAR46387.2019.8981598","DOIUrl":null,"url":null,"abstract":"This paper presents a Deep Reinforcement Learning agent for a 4-wheeled rover in a multi-goal competition task, under the influence of noisy GPS measurements. A previous related work has implemented a similar agent to the same task using only the raw dynamics measurements as observations. The Proximal Policy Optimization algorithm combined to Universal Value Function Approximators resulted in a system able to successfully overcome very noisy GPS observations and complete the challenge task. This work introduced a frontal camera to add visual input to the rover observations during the task execution. The main change on the algorithm is on the neural networks' architectures, in which a second input layer was added to deal with the image observations. In a few alternate versions of the networks, Long Short-Term Memory (LSTM) cells were included in the architecture as well. The addition of the camera did not present a significant increase in stability or performance of the network, and the computation time require increased.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"217 1","pages":"368-373"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning Control of an Autonomous Wheeled Robot in a Challenge Task: Combined Visual and Dynamics Sensoring\",\"authors\":\"Luiz Afonso Marão, Larissa Casteluci, Ricardo V. Godoy, Henrique B. Garcia, D. V. Magalhães, G. Caurin\",\"doi\":\"10.1109/ICAR46387.2019.8981598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Deep Reinforcement Learning agent for a 4-wheeled rover in a multi-goal competition task, under the influence of noisy GPS measurements. A previous related work has implemented a similar agent to the same task using only the raw dynamics measurements as observations. The Proximal Policy Optimization algorithm combined to Universal Value Function Approximators resulted in a system able to successfully overcome very noisy GPS observations and complete the challenge task. This work introduced a frontal camera to add visual input to the rover observations during the task execution. The main change on the algorithm is on the neural networks' architectures, in which a second input layer was added to deal with the image observations. In a few alternate versions of the networks, Long Short-Term Memory (LSTM) cells were included in the architecture as well. The addition of the camera did not present a significant increase in stability or performance of the network, and the computation time require increased.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"217 1\",\"pages\":\"368-373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Reinforcement Learning Control of an Autonomous Wheeled Robot in a Challenge Task: Combined Visual and Dynamics Sensoring
This paper presents a Deep Reinforcement Learning agent for a 4-wheeled rover in a multi-goal competition task, under the influence of noisy GPS measurements. A previous related work has implemented a similar agent to the same task using only the raw dynamics measurements as observations. The Proximal Policy Optimization algorithm combined to Universal Value Function Approximators resulted in a system able to successfully overcome very noisy GPS observations and complete the challenge task. This work introduced a frontal camera to add visual input to the rover observations during the task execution. The main change on the algorithm is on the neural networks' architectures, in which a second input layer was added to deal with the image observations. In a few alternate versions of the networks, Long Short-Term Memory (LSTM) cells were included in the architecture as well. The addition of the camera did not present a significant increase in stability or performance of the network, and the computation time require increased.