具有光电延迟单向耦合的激光链模型局部动力学

E. Grigorieva, S. Kashchenko
{"title":"具有光电延迟单向耦合的激光链模型局部动力学","authors":"E. Grigorieva, S. Kashchenko","doi":"10.18500/0869-6632-2022-30-2-189-207","DOIUrl":null,"url":null,"abstract":"Purpose. The local dynamics of the laser chain model with optoelectronic delayed unidirectional coupling is investigated. A system of equations is considered that describes the dynamics of a closed chain of a large number of lasers with optoelectronic delayed coupling between elements. An equivalent distributed integro-differential model with a small parameter inversely proportional to the number of lasers in the chain is proposed. For a distributed model with periodic edge conditions, the critical value of the coupling coefficient is obtained, at which the stationary state in the chain becomes unstable. It is shown that in a certain neighborhood of the bifurcation point, the number of roots of the characteristic equation with a real part close to zero increases indefinitely when the small parameter decreases. In this case, a two-dimensional complex Ginzburg–Landau equation with convection is constructed as a normal form. Its nonlocal dynamics determines the behavior of the solutions of the original boundary value problem. Research methods. Methods for studying local dynamics based on the construction of normal forms on central manifolds are used as applied to critical cases of (asymptotically) infinite dimension. An algorithm for reducing the original boundary value problem to the equation for slowly varying amplitudes is proposed. Results. The simplest homogeneous periodic solutions of Ginzburg–Landau equation and corresponding to them inhomogeneous solutions in the form of traveling waves in a distributed model are obtained. Such solutions can be interpreted as phase locking regimes in the chain of coupled lasers. The frequencies and amplitudes of oscillations of the radiation intensity of each laser and the phase difference between adjacent oscillators are determined.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Local dynamics of laser chain model with optoelectronic delayed unidirectional coupling\",\"authors\":\"E. Grigorieva, S. Kashchenko\",\"doi\":\"10.18500/0869-6632-2022-30-2-189-207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. The local dynamics of the laser chain model with optoelectronic delayed unidirectional coupling is investigated. A system of equations is considered that describes the dynamics of a closed chain of a large number of lasers with optoelectronic delayed coupling between elements. An equivalent distributed integro-differential model with a small parameter inversely proportional to the number of lasers in the chain is proposed. For a distributed model with periodic edge conditions, the critical value of the coupling coefficient is obtained, at which the stationary state in the chain becomes unstable. It is shown that in a certain neighborhood of the bifurcation point, the number of roots of the characteristic equation with a real part close to zero increases indefinitely when the small parameter decreases. In this case, a two-dimensional complex Ginzburg–Landau equation with convection is constructed as a normal form. Its nonlocal dynamics determines the behavior of the solutions of the original boundary value problem. Research methods. Methods for studying local dynamics based on the construction of normal forms on central manifolds are used as applied to critical cases of (asymptotically) infinite dimension. An algorithm for reducing the original boundary value problem to the equation for slowly varying amplitudes is proposed. Results. The simplest homogeneous periodic solutions of Ginzburg–Landau equation and corresponding to them inhomogeneous solutions in the form of traveling waves in a distributed model are obtained. Such solutions can be interpreted as phase locking regimes in the chain of coupled lasers. The frequencies and amplitudes of oscillations of the radiation intensity of each laser and the phase difference between adjacent oscillators are determined.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-2022-30-2-189-207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-2022-30-2-189-207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

目的。研究了具有光电延迟单向耦合的激光链模型的局部动力学。考虑了一种描述具有元件间光电延迟耦合的大量激光器闭合链动力学的方程组。提出了一种等效的分布积分-微分模型,该模型的小参数与链中激光器的数目成反比。对于具有周期边条件的分布式模型,得到了链中稳态变得不稳定的耦合系数临界值。结果表明,在分岔点的某一邻域中,实部趋近于零的特征方程的根数随着小参数的减小而无限增加。在这种情况下,以标准形式构造了具有对流的二维复金兹堡-朗道方程。它的非局部动力学决定了原边值问题解的行为。研究方法。研究了中心流形上基于范式构造的局部动力学方法,并将其应用于(渐近)无限维的临界情况。提出了一种将原边值问题化为慢变振幅方程的算法。结果。得到了金兹堡-朗道方程的最简齐次周期解及其在分布模型中行波形式的非齐次解。这种解可以解释为耦合激光链中的锁相机制。确定了每个激光器辐射强度的振荡频率和振幅以及相邻振荡器之间的相位差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local dynamics of laser chain model with optoelectronic delayed unidirectional coupling
Purpose. The local dynamics of the laser chain model with optoelectronic delayed unidirectional coupling is investigated. A system of equations is considered that describes the dynamics of a closed chain of a large number of lasers with optoelectronic delayed coupling between elements. An equivalent distributed integro-differential model with a small parameter inversely proportional to the number of lasers in the chain is proposed. For a distributed model with periodic edge conditions, the critical value of the coupling coefficient is obtained, at which the stationary state in the chain becomes unstable. It is shown that in a certain neighborhood of the bifurcation point, the number of roots of the characteristic equation with a real part close to zero increases indefinitely when the small parameter decreases. In this case, a two-dimensional complex Ginzburg–Landau equation with convection is constructed as a normal form. Its nonlocal dynamics determines the behavior of the solutions of the original boundary value problem. Research methods. Methods for studying local dynamics based on the construction of normal forms on central manifolds are used as applied to critical cases of (asymptotically) infinite dimension. An algorithm for reducing the original boundary value problem to the equation for slowly varying amplitudes is proposed. Results. The simplest homogeneous periodic solutions of Ginzburg–Landau equation and corresponding to them inhomogeneous solutions in the form of traveling waves in a distributed model are obtained. Such solutions can be interpreted as phase locking regimes in the chain of coupled lasers. The frequencies and amplitudes of oscillations of the radiation intensity of each laser and the phase difference between adjacent oscillators are determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
47
期刊介绍: Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.
期刊最新文献
80 years of Vladislav A. Tsarev 70 years of Sergey V. Gonchenko 40 years of Ilya V. Sysoev To the 85th anniversary of Dmitry Ivanovich Trubetskov On the anniversary of Sergei A. Kashchenko
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1