NSGA-II算法在连续二次多目标优化方案下收敛于单Pareto最优解

Raïmi Aboudou Essessinou, G. Degla
{"title":"NSGA-II算法在连续二次多目标优化方案下收敛于单Pareto最优解","authors":"Raïmi Aboudou Essessinou, G. Degla","doi":"10.5013/ijssst.a.21.01.06","DOIUrl":null,"url":null,"abstract":"In this paper, we test a fast elitist Non-Dominant Sorting Genetic Algorithm (NSGA-II) on a continuous quadratic multiobjective optimization problem. We use a big size of multiobjective programming for the Gross Domestic Product (GDP) quarterly disaggregation and we test different values of the NSGA-II parameters. We come to the conclusion that if the parameters are judiciously chosen, the NSGA-II algorithm converges to a single Pareto optimal solution in a regular and bounded set for the quadratic multiobjective optimization problem we used. It should be noted that elitism in the NSGA-II algorithm contributes to accelerating the rate of convergence and the overall performance of the genetic algorithm incorporated in it.","PeriodicalId":14286,"journal":{"name":"International journal of simulation: systems, science & technology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Convergence of NSGA-II Algorithm to a Single Pareto Optimal Solution with a Continuous and Quadratic Multi-objective Optimization Program\",\"authors\":\"Raïmi Aboudou Essessinou, G. Degla\",\"doi\":\"10.5013/ijssst.a.21.01.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we test a fast elitist Non-Dominant Sorting Genetic Algorithm (NSGA-II) on a continuous quadratic multiobjective optimization problem. We use a big size of multiobjective programming for the Gross Domestic Product (GDP) quarterly disaggregation and we test different values of the NSGA-II parameters. We come to the conclusion that if the parameters are judiciously chosen, the NSGA-II algorithm converges to a single Pareto optimal solution in a regular and bounded set for the quadratic multiobjective optimization problem we used. It should be noted that elitism in the NSGA-II algorithm contributes to accelerating the rate of convergence and the overall performance of the genetic algorithm incorporated in it.\",\"PeriodicalId\":14286,\"journal\":{\"name\":\"International journal of simulation: systems, science & technology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of simulation: systems, science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5013/ijssst.a.21.01.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of simulation: systems, science & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5013/ijssst.a.21.01.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对连续二次型多目标优化问题进行了快速精英非优势排序遗传算法(NSGA-II)的检验。我们对国内生产总值(GDP)季度分解使用了大规模的多目标规划,并测试了NSGA-II参数的不同值。结果表明,对于二次型多目标优化问题,在合理选择参数的情况下,NSGA-II算法收敛于正则有界集中的单个Pareto最优解。值得注意的是,NSGA-II算法中的精英主义有助于加快收敛速度,提高其所包含的遗传算法的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Convergence of NSGA-II Algorithm to a Single Pareto Optimal Solution with a Continuous and Quadratic Multi-objective Optimization Program
In this paper, we test a fast elitist Non-Dominant Sorting Genetic Algorithm (NSGA-II) on a continuous quadratic multiobjective optimization problem. We use a big size of multiobjective programming for the Gross Domestic Product (GDP) quarterly disaggregation and we test different values of the NSGA-II parameters. We come to the conclusion that if the parameters are judiciously chosen, the NSGA-II algorithm converges to a single Pareto optimal solution in a regular and bounded set for the quadratic multiobjective optimization problem we used. It should be noted that elitism in the NSGA-II algorithm contributes to accelerating the rate of convergence and the overall performance of the genetic algorithm incorporated in it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Business Process Automation: Automating the Analysis of Anomaly Data The Emergence of Quaternary-Based Computational-Strata from a Symmetrical Multi-Layered Model of Light Understanding the Importance of Efficient Visitor Flow Within Tokyo Skytree A Cross-Layer Architecture with Service Adaptability for Wireless Multimedia Networks Split Step Fourier Method Application, Reducing Pulse Broadening Effect for a Single Mode Optical Fiber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1