猪与蜂箱用例分析

D. Kendal, Oded Koren, N. Perel
{"title":"猪与蜂箱用例分析","authors":"D. Kendal, Oded Koren, N. Perel","doi":"10.14257/IJDTA.2016.9.12.24","DOIUrl":null,"url":null,"abstract":"Corporations are changing their practices to data-driven big data initiatives, as big data analytics has provided companies with the ability to grow their businesses and increase competition. As the importance of data analytics grew, so accordingly did the size of the data to analyze, thus demanding a more powerful data platform. This paper shows a case study of two High Level Query Languages that are constructed on top of Hadoop MapReduce; Pig and Hive. By creating a query in each query language, both resulting in an identical output, and by running each query 30 times on 2 different sized files (120 runs total), this comparison provides a statistically significant conclusion.","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"12 1 1","pages":"267-276"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pig Vs. Hive Use Case Analysis\",\"authors\":\"D. Kendal, Oded Koren, N. Perel\",\"doi\":\"10.14257/IJDTA.2016.9.12.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corporations are changing their practices to data-driven big data initiatives, as big data analytics has provided companies with the ability to grow their businesses and increase competition. As the importance of data analytics grew, so accordingly did the size of the data to analyze, thus demanding a more powerful data platform. This paper shows a case study of two High Level Query Languages that are constructed on top of Hadoop MapReduce; Pig and Hive. By creating a query in each query language, both resulting in an identical output, and by running each query 30 times on 2 different sized files (120 runs total), this comparison provides a statistically significant conclusion.\",\"PeriodicalId\":13926,\"journal\":{\"name\":\"International journal of database theory and application\",\"volume\":\"12 1 1\",\"pages\":\"267-276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of database theory and application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14257/IJDTA.2016.9.12.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJDTA.2016.9.12.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着大数据分析为企业提供了发展业务和增加竞争的能力,企业正在将其实践转变为数据驱动的大数据计划。随着数据分析重要性的提高,需要分析的数据量也随之增加,因此需要一个更强大的数据平台。本文展示了基于Hadoop MapReduce构建的两种高级查询语言的案例研究;小猪和蜂巢。通过在每种查询语言中创建查询,两种查询语言都会产生相同的输出,并且在两个不同大小的文件上运行每个查询30次(总共运行120次),这种比较提供了统计上显著的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pig Vs. Hive Use Case Analysis
Corporations are changing their practices to data-driven big data initiatives, as big data analytics has provided companies with the ability to grow their businesses and increase competition. As the importance of data analytics grew, so accordingly did the size of the data to analyze, thus demanding a more powerful data platform. This paper shows a case study of two High Level Query Languages that are constructed on top of Hadoop MapReduce; Pig and Hive. By creating a query in each query language, both resulting in an identical output, and by running each query 30 times on 2 different sized files (120 runs total), this comparison provides a statistically significant conclusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logical Data Integration Model for the Integration of Data Repositories Fuzzy Associative Classification Driven MapReduce Computing Solution for Effective Learning from Uncertain and Dynamic Big Data Decision Tree Algorithms C4.5 and C5.0 in Data Mining: A Review Evaluating Intelligent Search Agents in a Controlled Environment Using Complex Queries: An Empirical Study ScaffdCF: A Prototype Interface for Managing Conflicts in Peer Review Process of Open Collaboration Projects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1