Aleck Kondwakwenda, J. Sibiya, R. Zengeni, C. Musvosvi
{"title":"玉米抗旱育种研究进展与现代育种方法","authors":"Aleck Kondwakwenda, J. Sibiya, R. Zengeni, C. Musvosvi","doi":"10.21475/ajcs.21.15.04.p2779","DOIUrl":null,"url":null,"abstract":"Breeding for drought tolerance in plants is challenging because it is controlled by multiple genes. Grain yield, the trait of primary interest in maize, is characterized by low heritability, high genotype by environment interaction, and low variation under drought conditions, which further complicates selection. To circumvent these challenges, secondary traits that are highly correlated with grain yield are indirectly selected under drought conditions. Although considerable success in terms of yield gains under drought stress has been reported in both temperate and tropical maize breeding programmes, climate change exacerbated droughts coupled with high population growth necessitates continuous improvement of maize varieties. Understanding the genetics of associated secondary traits is essential in elucidating drought tolerance. The identification of quantitative trait loci (QTL) and candidate genes conferring drought tolerance and the subsequent development of relevant molecular markers ushered in the era of molecular assisted breeding. There is empirical evidence that marker-assisted selection and genomic selection have great potential to increase the yield gains while comprehensive and accurate phenotyping using secondary traits remains the pillar of drought tolerance breeding","PeriodicalId":8309,"journal":{"name":"April 2021","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aspects in breeding maize for drought tolerance: Progress and modern breeding approaches\",\"authors\":\"Aleck Kondwakwenda, J. Sibiya, R. Zengeni, C. Musvosvi\",\"doi\":\"10.21475/ajcs.21.15.04.p2779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breeding for drought tolerance in plants is challenging because it is controlled by multiple genes. Grain yield, the trait of primary interest in maize, is characterized by low heritability, high genotype by environment interaction, and low variation under drought conditions, which further complicates selection. To circumvent these challenges, secondary traits that are highly correlated with grain yield are indirectly selected under drought conditions. Although considerable success in terms of yield gains under drought stress has been reported in both temperate and tropical maize breeding programmes, climate change exacerbated droughts coupled with high population growth necessitates continuous improvement of maize varieties. Understanding the genetics of associated secondary traits is essential in elucidating drought tolerance. The identification of quantitative trait loci (QTL) and candidate genes conferring drought tolerance and the subsequent development of relevant molecular markers ushered in the era of molecular assisted breeding. There is empirical evidence that marker-assisted selection and genomic selection have great potential to increase the yield gains while comprehensive and accurate phenotyping using secondary traits remains the pillar of drought tolerance breeding\",\"PeriodicalId\":8309,\"journal\":{\"name\":\"April 2021\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"April 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21475/ajcs.21.15.04.p2779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"April 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/ajcs.21.15.04.p2779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aspects in breeding maize for drought tolerance: Progress and modern breeding approaches
Breeding for drought tolerance in plants is challenging because it is controlled by multiple genes. Grain yield, the trait of primary interest in maize, is characterized by low heritability, high genotype by environment interaction, and low variation under drought conditions, which further complicates selection. To circumvent these challenges, secondary traits that are highly correlated with grain yield are indirectly selected under drought conditions. Although considerable success in terms of yield gains under drought stress has been reported in both temperate and tropical maize breeding programmes, climate change exacerbated droughts coupled with high population growth necessitates continuous improvement of maize varieties. Understanding the genetics of associated secondary traits is essential in elucidating drought tolerance. The identification of quantitative trait loci (QTL) and candidate genes conferring drought tolerance and the subsequent development of relevant molecular markers ushered in the era of molecular assisted breeding. There is empirical evidence that marker-assisted selection and genomic selection have great potential to increase the yield gains while comprehensive and accurate phenotyping using secondary traits remains the pillar of drought tolerance breeding