利用河流形成动力学求解动态TSP

Pablo Rabanal, Ismael Rodríguez, F. Rubio
{"title":"利用河流形成动力学求解动态TSP","authors":"Pablo Rabanal, Ismael Rodríguez, F. Rubio","doi":"10.1109/ICNC.2008.760","DOIUrl":null,"url":null,"abstract":"River formation dynamics (RFD) is an heuristic optimization algorithm based on copying how water forms rivers by eroding the ground and depositing sediments. After drops transform the landscape by increasing/decreasing the altitude of places, solutions are given in the form of paths of decreasing altitudes. Decreasing gradients are constructed, and these gradients are followed by subsequent drops to compose new gradients and reinforce the best ones. We apply this method to solve dynamic TSP. We show that the gradient orientation of RFD makes it specially suitable for solving this problem, and we compare our results with those given by ant colony optimization (ACO).","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"42 1","pages":"246-250"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Solving Dynamic TSP by Using River Formation Dynamics\",\"authors\":\"Pablo Rabanal, Ismael Rodríguez, F. Rubio\",\"doi\":\"10.1109/ICNC.2008.760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"River formation dynamics (RFD) is an heuristic optimization algorithm based on copying how water forms rivers by eroding the ground and depositing sediments. After drops transform the landscape by increasing/decreasing the altitude of places, solutions are given in the form of paths of decreasing altitudes. Decreasing gradients are constructed, and these gradients are followed by subsequent drops to compose new gradients and reinforce the best ones. We apply this method to solve dynamic TSP. We show that the gradient orientation of RFD makes it specially suitable for solving this problem, and we compare our results with those given by ant colony optimization (ACO).\",\"PeriodicalId\":6404,\"journal\":{\"name\":\"2008 Fourth International Conference on Natural Computation\",\"volume\":\"42 1\",\"pages\":\"246-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2008.760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

河流形成动力学(River formation dynamics, RFD)是一种基于模拟水如何通过侵蚀地面和沉积沉积物形成河流的启发式优化算法。在通过增加/降低地方的高度来改变景观之后,以降低高度的路径的形式给出了解决方案。构造递减梯度,在递减梯度之后再进行递降,形成新的梯度,并对最佳梯度进行加固。我们将此方法应用于求解动态TSP问题。结果表明,梯度定向的RFD算法特别适合于求解这一问题,并与蚁群算法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving Dynamic TSP by Using River Formation Dynamics
River formation dynamics (RFD) is an heuristic optimization algorithm based on copying how water forms rivers by eroding the ground and depositing sediments. After drops transform the landscape by increasing/decreasing the altitude of places, solutions are given in the form of paths of decreasing altitudes. Decreasing gradients are constructed, and these gradients are followed by subsequent drops to compose new gradients and reinforce the best ones. We apply this method to solve dynamic TSP. We show that the gradient orientation of RFD makes it specially suitable for solving this problem, and we compare our results with those given by ant colony optimization (ACO).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-Level Content-Based Endoscope Image Retrieval A New PSO Scheduling Simulation Algorithm Based on an Intelligent Compensation Particle Position Rounding off Genetic Algorithm with an Application to Complex Portfolio Selection Some Operations of L-Fuzzy Approximate Spaces On Residuated Lattices Image Edge Detection Based on Improved Local Fractal Dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1