{"title":"局部分布图问题的复杂性","authors":"M. Ghaffari, F. Kuhn, Yannic Maus","doi":"10.1145/3055399.3055471","DOIUrl":null,"url":null,"abstract":"This paper is centered on the complexity of graph problems in the well-studied LOCAL model of distributed computing, introduced by Linial [FOCS '87]. It is widely known that for many of the classic distributed graph problems (including maximal independent set (MIS) and (Δ+1)-vertex coloring), the randomized complexity is at most polylogarithmic in the size n of the network, while the best deterministic complexity is typically 2O(√logn). Understanding and potentially narrowing down this exponential gap is considered to be one of the central long-standing open questions in the area of distributed graph algorithms. We investigate the problem by introducing a complexity-theoretic framework that allows us to shed some light on the role of randomness in the LOCAL model. We define the SLOCAL model as a sequential version of the LOCAL model. Our framework allows us to prove completeness results with respect to the class of problems which can be solved efficiently in the SLOCAL model, implying that if any of the complete problems can be solved deterministically in logn rounds in the LOCAL model, we can deterministically solve all efficient SLOCAL-problems (including MIS and (Δ+1)-coloring) in logn rounds in the LOCAL model. Perhaps most surprisingly, we show that a rather rudimentary looking graph coloring problem is complete in the above sense: Color the nodes of a graph with colors red and blue such that each node of sufficiently large polylogarithmic degree has at least one neighbor of each color. The problem admits a trivial zero-round randomized solution. The result can be viewed as showing that the only obstacle to getting efficient determinstic algorithms in the LOCAL model is an efficient algorithm to approximately round fractional values into integer values. In addition, our formal framework also allows us to develop polylogarithmic-time randomized distributed algorithms in a simpler way. As a result, we provide a polylog-time distributed approximation scheme for arbitrary distributed covering and packing integer linear programs.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":"{\"title\":\"On the complexity of local distributed graph problems\",\"authors\":\"M. Ghaffari, F. Kuhn, Yannic Maus\",\"doi\":\"10.1145/3055399.3055471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is centered on the complexity of graph problems in the well-studied LOCAL model of distributed computing, introduced by Linial [FOCS '87]. It is widely known that for many of the classic distributed graph problems (including maximal independent set (MIS) and (Δ+1)-vertex coloring), the randomized complexity is at most polylogarithmic in the size n of the network, while the best deterministic complexity is typically 2O(√logn). Understanding and potentially narrowing down this exponential gap is considered to be one of the central long-standing open questions in the area of distributed graph algorithms. We investigate the problem by introducing a complexity-theoretic framework that allows us to shed some light on the role of randomness in the LOCAL model. We define the SLOCAL model as a sequential version of the LOCAL model. Our framework allows us to prove completeness results with respect to the class of problems which can be solved efficiently in the SLOCAL model, implying that if any of the complete problems can be solved deterministically in logn rounds in the LOCAL model, we can deterministically solve all efficient SLOCAL-problems (including MIS and (Δ+1)-coloring) in logn rounds in the LOCAL model. Perhaps most surprisingly, we show that a rather rudimentary looking graph coloring problem is complete in the above sense: Color the nodes of a graph with colors red and blue such that each node of sufficiently large polylogarithmic degree has at least one neighbor of each color. The problem admits a trivial zero-round randomized solution. The result can be viewed as showing that the only obstacle to getting efficient determinstic algorithms in the LOCAL model is an efficient algorithm to approximately round fractional values into integer values. In addition, our formal framework also allows us to develop polylogarithmic-time randomized distributed algorithms in a simpler way. As a result, we provide a polylog-time distributed approximation scheme for arbitrary distributed covering and packing integer linear programs.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the complexity of local distributed graph problems
This paper is centered on the complexity of graph problems in the well-studied LOCAL model of distributed computing, introduced by Linial [FOCS '87]. It is widely known that for many of the classic distributed graph problems (including maximal independent set (MIS) and (Δ+1)-vertex coloring), the randomized complexity is at most polylogarithmic in the size n of the network, while the best deterministic complexity is typically 2O(√logn). Understanding and potentially narrowing down this exponential gap is considered to be one of the central long-standing open questions in the area of distributed graph algorithms. We investigate the problem by introducing a complexity-theoretic framework that allows us to shed some light on the role of randomness in the LOCAL model. We define the SLOCAL model as a sequential version of the LOCAL model. Our framework allows us to prove completeness results with respect to the class of problems which can be solved efficiently in the SLOCAL model, implying that if any of the complete problems can be solved deterministically in logn rounds in the LOCAL model, we can deterministically solve all efficient SLOCAL-problems (including MIS and (Δ+1)-coloring) in logn rounds in the LOCAL model. Perhaps most surprisingly, we show that a rather rudimentary looking graph coloring problem is complete in the above sense: Color the nodes of a graph with colors red and blue such that each node of sufficiently large polylogarithmic degree has at least one neighbor of each color. The problem admits a trivial zero-round randomized solution. The result can be viewed as showing that the only obstacle to getting efficient determinstic algorithms in the LOCAL model is an efficient algorithm to approximately round fractional values into integer values. In addition, our formal framework also allows us to develop polylogarithmic-time randomized distributed algorithms in a simpler way. As a result, we provide a polylog-time distributed approximation scheme for arbitrary distributed covering and packing integer linear programs.