对缓存分区进行硬件评估,以提高利用率和能源效率,同时保持响应性

Henry Cook, Miquel Moretó, Sarah Bird, Khanh Dao, D. Patterson, K. Asanović
{"title":"对缓存分区进行硬件评估,以提高利用率和能源效率,同时保持响应性","authors":"Henry Cook, Miquel Moretó, Sarah Bird, Khanh Dao, D. Patterson, K. Asanović","doi":"10.1145/2485922.2485949","DOIUrl":null,"url":null,"abstract":"Computing workloads often contain a mix of interactive, latency-sensitive foreground applications and recurring background computations. To guarantee responsiveness, interactive and batch applications are often run on disjoint sets of resources, but this incurs additional energy, power, and capital costs. In this paper, we evaluate the potential of hardware cache partitioning mechanisms and policies to improve efficiency by allowing background applications to run simultaneously with interactive foreground applications, while avoiding degradation in interactive responsiveness. We evaluate these tradeoffs using commercial x86 multicore hardware that supports cache partitioning, and find that real hardware measurements with full applications provide different observations than past simulation-based evaluations. Co-scheduling applications without LLC partitioning leads to a 10% energy improvement and average throughput improvement of 54% compared to running tasks separately, but can result in foreground performance degradation of up to 34% with an average of 6%. With optimal static LLC partitioning, the average energy improvement increases to 12% and the average throughput improvement to 60%, while the worst case slowdown is reduced noticeably to 7% with an average slowdown of only 2%. We also evaluate a practical low-overhead dynamic algorithm to control partition sizes, and are able to realize the potential performance guarantees of the optimal static approach, while increasing background throughput by an additional 19%.","PeriodicalId":20555,"journal":{"name":"Proceedings of the 40th Annual International Symposium on Computer Architecture","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":"{\"title\":\"A hardware evaluation of cache partitioning to improve utilization and energy-efficiency while preserving responsiveness\",\"authors\":\"Henry Cook, Miquel Moretó, Sarah Bird, Khanh Dao, D. Patterson, K. Asanović\",\"doi\":\"10.1145/2485922.2485949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing workloads often contain a mix of interactive, latency-sensitive foreground applications and recurring background computations. To guarantee responsiveness, interactive and batch applications are often run on disjoint sets of resources, but this incurs additional energy, power, and capital costs. In this paper, we evaluate the potential of hardware cache partitioning mechanisms and policies to improve efficiency by allowing background applications to run simultaneously with interactive foreground applications, while avoiding degradation in interactive responsiveness. We evaluate these tradeoffs using commercial x86 multicore hardware that supports cache partitioning, and find that real hardware measurements with full applications provide different observations than past simulation-based evaluations. Co-scheduling applications without LLC partitioning leads to a 10% energy improvement and average throughput improvement of 54% compared to running tasks separately, but can result in foreground performance degradation of up to 34% with an average of 6%. With optimal static LLC partitioning, the average energy improvement increases to 12% and the average throughput improvement to 60%, while the worst case slowdown is reduced noticeably to 7% with an average slowdown of only 2%. We also evaluate a practical low-overhead dynamic algorithm to control partition sizes, and are able to realize the potential performance guarantees of the optimal static approach, while increasing background throughput by an additional 19%.\",\"PeriodicalId\":20555,\"journal\":{\"name\":\"Proceedings of the 40th Annual International Symposium on Computer Architecture\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"135\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2485922.2485949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2485922.2485949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135

摘要

计算工作负载通常包含交互式的、对延迟敏感的前台应用程序和反复出现的后台计算。为了保证响应性,交互式和批处理应用程序通常在不相交的资源集上运行,但这会产生额外的能源、电力和资本成本。在本文中,我们评估了硬件缓存分区机制和策略的潜力,通过允许后台应用程序与交互式前台应用程序同时运行来提高效率,同时避免交互响应能力的下降。我们使用支持缓存分区的商用x86多核硬件评估了这些权衡,发现完整应用程序的真实硬件测量提供了与过去基于模拟的评估不同的观察结果。与单独运行任务相比,没有LLC分区的协同调度应用程序可以节省10%的能源,平均吞吐量提高54%,但可能导致前台性能下降高达34%,平均下降6%。使用最优静态LLC分区,平均能量改进提高到12%,平均吞吐量提高到60%,而最坏情况下的减速明显降低到7%,平均减速仅为2%。我们还评估了一种实用的低开销动态算法来控制分区大小,并且能够实现最优静态方法的潜在性能保证,同时将后台吞吐量额外提高19%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hardware evaluation of cache partitioning to improve utilization and energy-efficiency while preserving responsiveness
Computing workloads often contain a mix of interactive, latency-sensitive foreground applications and recurring background computations. To guarantee responsiveness, interactive and batch applications are often run on disjoint sets of resources, but this incurs additional energy, power, and capital costs. In this paper, we evaluate the potential of hardware cache partitioning mechanisms and policies to improve efficiency by allowing background applications to run simultaneously with interactive foreground applications, while avoiding degradation in interactive responsiveness. We evaluate these tradeoffs using commercial x86 multicore hardware that supports cache partitioning, and find that real hardware measurements with full applications provide different observations than past simulation-based evaluations. Co-scheduling applications without LLC partitioning leads to a 10% energy improvement and average throughput improvement of 54% compared to running tasks separately, but can result in foreground performance degradation of up to 34% with an average of 6%. With optimal static LLC partitioning, the average energy improvement increases to 12% and the average throughput improvement to 60%, while the worst case slowdown is reduced noticeably to 7% with an average slowdown of only 2%. We also evaluate a practical low-overhead dynamic algorithm to control partition sizes, and are able to realize the potential performance guarantees of the optimal static approach, while increasing background throughput by an additional 19%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AC-DIMM: associative computing with STT-MRAM Deconfigurable microprocessor architectures for silicon debug acceleration Thin servers with smart pipes: designing SoC accelerators for memcached An experimental study of data retention behavior in modern DRAM devices: implications for retention time profiling mechanisms Dynamic reduction of voltage margins by leveraging on-chip ECC in Itanium II processors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1