{"title":"可再生能源用CuFe-CGN结构与电学性能研究","authors":"Amna Siddique, M. Anis-Ur-Rehman","doi":"10.4028/p-co85a8","DOIUrl":null,"url":null,"abstract":"Renewable energy source is a clean energy production source and can overcome climatic challenges caused by the excessive use of fossil fuels. The nanocrystalline material of composition Cu0.2Fe0.2(Ce0.6Gd0.4-xNdx)0.6O2-x has been synthesized by WOWS sol-gel process by varying Neodymium as such x= 0.0, 0.05. These samples were calcined at 500°C for 2 hours and the pellets were sintered at 750°C for 5 hours. X-Ray Diffraction technique confirms the cubic fluorite structure of the material. The doped material has showed high dielectric constant value and low dissipation factor and increased AC conductivity. AC conductivity obeys the Universal Dielectric Response. The material shows the potential for applications such as an electrode/electrolyte for fuel cells or also as a dielectric resonator.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"1 1","pages":"33 - 39"},"PeriodicalIF":0.4000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Structural and Electrical Properties of CuFe-CGN for Renewable Energy Applications\",\"authors\":\"Amna Siddique, M. Anis-Ur-Rehman\",\"doi\":\"10.4028/p-co85a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable energy source is a clean energy production source and can overcome climatic challenges caused by the excessive use of fossil fuels. The nanocrystalline material of composition Cu0.2Fe0.2(Ce0.6Gd0.4-xNdx)0.6O2-x has been synthesized by WOWS sol-gel process by varying Neodymium as such x= 0.0, 0.05. These samples were calcined at 500°C for 2 hours and the pellets were sintered at 750°C for 5 hours. X-Ray Diffraction technique confirms the cubic fluorite structure of the material. The doped material has showed high dielectric constant value and low dissipation factor and increased AC conductivity. AC conductivity obeys the Universal Dielectric Response. The material shows the potential for applications such as an electrode/electrolyte for fuel cells or also as a dielectric resonator.\",\"PeriodicalId\":18861,\"journal\":{\"name\":\"Nano Hybrids and Composites\",\"volume\":\"1 1\",\"pages\":\"33 - 39\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Hybrids and Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-co85a8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Hybrids and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-co85a8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Study of Structural and Electrical Properties of CuFe-CGN for Renewable Energy Applications
Renewable energy source is a clean energy production source and can overcome climatic challenges caused by the excessive use of fossil fuels. The nanocrystalline material of composition Cu0.2Fe0.2(Ce0.6Gd0.4-xNdx)0.6O2-x has been synthesized by WOWS sol-gel process by varying Neodymium as such x= 0.0, 0.05. These samples were calcined at 500°C for 2 hours and the pellets were sintered at 750°C for 5 hours. X-Ray Diffraction technique confirms the cubic fluorite structure of the material. The doped material has showed high dielectric constant value and low dissipation factor and increased AC conductivity. AC conductivity obeys the Universal Dielectric Response. The material shows the potential for applications such as an electrode/electrolyte for fuel cells or also as a dielectric resonator.