J. Gonz'alez-Payo, M. Cort'es-Contreras, N. Lodieu, E. Solano, Z. Zhang, M. G'alvez-Ortiz
{"title":"与盖亚和虚拟天文台的M和L亚矮星广泛伴星","authors":"J. Gonz'alez-Payo, M. Cort'es-Contreras, N. Lodieu, E. Solano, Z. Zhang, M. G'alvez-Ortiz","doi":"10.1051/0004-6361/202140493","DOIUrl":null,"url":null,"abstract":"Aims. The aim of the project is to identify wide common proper motion companions to a sample of spectroscopically confirmed M and L metal-poor dwarfs (also known as subdwarfs) to investigate the impact of metallicity on the binary fraction of low-mass metal-poor binaries and to improve the determination of their metallicity from the higher-mass binary. Methods. We made use of Virtual Observatory tools and large-scale public surveys to look in Gaia for common proper motion companions to a well-defined sample of ultracool subdwarfs with spectral types later than M5 and metallicities below or equal to −0.5 dex. We collected low-resolution optical spectroscopy for our best system, which is a binary composed of one sdM1.5 subdwarf and one sdM5.5 subdwarf located at ∼1 360 au, and for another two likely systems separated by more than 115 000 au. Results. We confirm one wide companion to an M subdwarf, and infer a multiplicity for M subdwarfs (sdMs) of 1.0+2.0 −1.0% for projected physical separations of up to 743 000 au. We also find four M–L systems, three of which are new detections. No colder companion was identified in any of the 219 M and L subdwarfs of the sample, mainly because of limitations on the detection of faint sources with Gaia. We infer a frequency of wide systems for sdM5–9.5 of 0.60+1.17 −0.60% for projected physical separations larger than 1 360 au (up to 142 400 au). This study shows a multiplicity rate of 1.0+2.0 −1.0% in sdMs, and 1.9 +3.7 −1.9% in extreme M subdwarfs (esdMs). We did not find any companion for the ultra M subdwarfs (usdMs) of our sample, establishing an upper limit of 5.3% on binarity for these objects.","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"1 1","pages":"143"},"PeriodicalIF":27.8000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wide companions to M and L subdwarfs with Gaia and the Virtual Observatory\",\"authors\":\"J. Gonz'alez-Payo, M. Cort'es-Contreras, N. Lodieu, E. Solano, Z. Zhang, M. G'alvez-Ortiz\",\"doi\":\"10.1051/0004-6361/202140493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aims. The aim of the project is to identify wide common proper motion companions to a sample of spectroscopically confirmed M and L metal-poor dwarfs (also known as subdwarfs) to investigate the impact of metallicity on the binary fraction of low-mass metal-poor binaries and to improve the determination of their metallicity from the higher-mass binary. Methods. We made use of Virtual Observatory tools and large-scale public surveys to look in Gaia for common proper motion companions to a well-defined sample of ultracool subdwarfs with spectral types later than M5 and metallicities below or equal to −0.5 dex. We collected low-resolution optical spectroscopy for our best system, which is a binary composed of one sdM1.5 subdwarf and one sdM5.5 subdwarf located at ∼1 360 au, and for another two likely systems separated by more than 115 000 au. Results. We confirm one wide companion to an M subdwarf, and infer a multiplicity for M subdwarfs (sdMs) of 1.0+2.0 −1.0% for projected physical separations of up to 743 000 au. We also find four M–L systems, three of which are new detections. No colder companion was identified in any of the 219 M and L subdwarfs of the sample, mainly because of limitations on the detection of faint sources with Gaia. We infer a frequency of wide systems for sdM5–9.5 of 0.60+1.17 −0.60% for projected physical separations larger than 1 360 au (up to 142 400 au). This study shows a multiplicity rate of 1.0+2.0 −1.0% in sdMs, and 1.9 +3.7 −1.9% in extreme M subdwarfs (esdMs). We did not find any companion for the ultra M subdwarfs (usdMs) of our sample, establishing an upper limit of 5.3% on binarity for these objects.\",\"PeriodicalId\":785,\"journal\":{\"name\":\"The Astronomy and Astrophysics Review\",\"volume\":\"1 1\",\"pages\":\"143\"},\"PeriodicalIF\":27.8000,\"publicationDate\":\"2021-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astronomy and Astrophysics Review\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202140493\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/0004-6361/202140493","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Wide companions to M and L subdwarfs with Gaia and the Virtual Observatory
Aims. The aim of the project is to identify wide common proper motion companions to a sample of spectroscopically confirmed M and L metal-poor dwarfs (also known as subdwarfs) to investigate the impact of metallicity on the binary fraction of low-mass metal-poor binaries and to improve the determination of their metallicity from the higher-mass binary. Methods. We made use of Virtual Observatory tools and large-scale public surveys to look in Gaia for common proper motion companions to a well-defined sample of ultracool subdwarfs with spectral types later than M5 and metallicities below or equal to −0.5 dex. We collected low-resolution optical spectroscopy for our best system, which is a binary composed of one sdM1.5 subdwarf and one sdM5.5 subdwarf located at ∼1 360 au, and for another two likely systems separated by more than 115 000 au. Results. We confirm one wide companion to an M subdwarf, and infer a multiplicity for M subdwarfs (sdMs) of 1.0+2.0 −1.0% for projected physical separations of up to 743 000 au. We also find four M–L systems, three of which are new detections. No colder companion was identified in any of the 219 M and L subdwarfs of the sample, mainly because of limitations on the detection of faint sources with Gaia. We infer a frequency of wide systems for sdM5–9.5 of 0.60+1.17 −0.60% for projected physical separations larger than 1 360 au (up to 142 400 au). This study shows a multiplicity rate of 1.0+2.0 −1.0% in sdMs, and 1.9 +3.7 −1.9% in extreme M subdwarfs (esdMs). We did not find any companion for the ultra M subdwarfs (usdMs) of our sample, establishing an upper limit of 5.3% on binarity for these objects.
期刊介绍:
The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.