{"title":"显式的,几乎最优的,平衡的代码","authors":"A. Ta-Shma","doi":"10.1145/3055399.3055408","DOIUrl":null,"url":null,"abstract":"The question of finding an epsilon-biased set with close to optimal support size, or, equivalently, finding an explicit binary code with distance 1-ϵ/2 and rate close to the Gilbert-Varshamov bound, attracted a lot of attention in recent decades. In this paper we solve the problem almost optimally and show an explicit ϵ-biased set over k bits with support size O(k/ϵ2+o(1)). This improves upon all previous explicit constructions which were in the order of k2/ϵ2, k/ϵ3 or k5/4/ϵ5/2. The result is close to the Gilbert-Varshamov bound which is O(k/ϵ2) and the lower bound which is Ω(k/ϵ2 log1/ϵ). The main technical tool we use is bias amplification with the s-wide replacement product. The sum of two independent samples from an ϵ-biased set is ϵ2 biased. Rozenman and Wigderson showed how to amplify the bias more economically by choosing two samples with an expander. Based on that they suggested a recursive construction that achieves sample size O(k/ϵ4). We show that amplification with a long random walk over the s-wide replacement product reduces the bias almost optimally.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Explicit, almost optimal, epsilon-balanced codes\",\"authors\":\"A. Ta-Shma\",\"doi\":\"10.1145/3055399.3055408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The question of finding an epsilon-biased set with close to optimal support size, or, equivalently, finding an explicit binary code with distance 1-ϵ/2 and rate close to the Gilbert-Varshamov bound, attracted a lot of attention in recent decades. In this paper we solve the problem almost optimally and show an explicit ϵ-biased set over k bits with support size O(k/ϵ2+o(1)). This improves upon all previous explicit constructions which were in the order of k2/ϵ2, k/ϵ3 or k5/4/ϵ5/2. The result is close to the Gilbert-Varshamov bound which is O(k/ϵ2) and the lower bound which is Ω(k/ϵ2 log1/ϵ). The main technical tool we use is bias amplification with the s-wide replacement product. The sum of two independent samples from an ϵ-biased set is ϵ2 biased. Rozenman and Wigderson showed how to amplify the bias more economically by choosing two samples with an expander. Based on that they suggested a recursive construction that achieves sample size O(k/ϵ4). We show that amplification with a long random walk over the s-wide replacement product reduces the bias almost optimally.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The question of finding an epsilon-biased set with close to optimal support size, or, equivalently, finding an explicit binary code with distance 1-ϵ/2 and rate close to the Gilbert-Varshamov bound, attracted a lot of attention in recent decades. In this paper we solve the problem almost optimally and show an explicit ϵ-biased set over k bits with support size O(k/ϵ2+o(1)). This improves upon all previous explicit constructions which were in the order of k2/ϵ2, k/ϵ3 or k5/4/ϵ5/2. The result is close to the Gilbert-Varshamov bound which is O(k/ϵ2) and the lower bound which is Ω(k/ϵ2 log1/ϵ). The main technical tool we use is bias amplification with the s-wide replacement product. The sum of two independent samples from an ϵ-biased set is ϵ2 biased. Rozenman and Wigderson showed how to amplify the bias more economically by choosing two samples with an expander. Based on that they suggested a recursive construction that achieves sample size O(k/ϵ4). We show that amplification with a long random walk over the s-wide replacement product reduces the bias almost optimally.