求助PDF
{"title":"区域建议网络快速目标检测中一种新的多尺度特征融合方法","authors":"Gang Liu, Chuyi Wang","doi":"10.4018/ijdwm.2020070107","DOIUrl":null,"url":null,"abstract":"Neuralnetworkmodelshavebeenwidelyusedinthefieldofobjectdetecting.Theregionproposal methodsarewidelyusedinthecurrentobjectdetectionnetworksandhaveachievedwellperformance. Thecommonregionproposalmethodshunttheobjectsbygeneratingthousandsofthecandidate boxes.Compared toother regionproposalmethods, the regionproposalnetwork (RPN)method improvestheaccuracyanddetectionspeedwithseveralhundredcandidateboxes.However,sincethe featuremapscontainsinsufficientinformation,theabilityofRPNtodetectandlocatesmall-sized objectsispoor.Anovelmulti-scalefeaturefusionmethodforregionproposalnetworktosolvethe aboveproblemsisproposedinthisarticle.Theproposedmethodiscalledmulti-scaleregionproposal network(MS-RPN)whichcangeneratesuitablefeaturemapsfortheregionproposalnetwork.In MS-RPN,theselectedfeaturemapsatmultiplescalesarefineturnedrespectivelyandcompressed intoauniformspace.Thegeneratedfusionfeaturemapsarecalledrefinedfusionfeatures(RFFs). RFFsincorporateabundantdetailinformationandcontextinformation.AndRFFsaresenttoRPN togeneratebetterregionproposals.TheproposedapproachisevaluatedonPASCALVOC2007 andMSCOCObenchmarktasks.MS-RPNobtainssignificantimprovementsoverthecomparable state-of-the-artdetectionmodels. KeyWORDS Fusion Feature, Multi-Scale, Object Detecting, Region Proposal Network","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":"23 1","pages":"132-145"},"PeriodicalIF":0.5000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Novel Multi-Scale Feature Fusion Method for Region Proposal Network in Fast Object Detection\",\"authors\":\"Gang Liu, Chuyi Wang\",\"doi\":\"10.4018/ijdwm.2020070107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuralnetworkmodelshavebeenwidelyusedinthefieldofobjectdetecting.Theregionproposal methodsarewidelyusedinthecurrentobjectdetectionnetworksandhaveachievedwellperformance. Thecommonregionproposalmethodshunttheobjectsbygeneratingthousandsofthecandidate boxes.Compared toother regionproposalmethods, the regionproposalnetwork (RPN)method improvestheaccuracyanddetectionspeedwithseveralhundredcandidateboxes.However,sincethe featuremapscontainsinsufficientinformation,theabilityofRPNtodetectandlocatesmall-sized objectsispoor.Anovelmulti-scalefeaturefusionmethodforregionproposalnetworktosolvethe aboveproblemsisproposedinthisarticle.Theproposedmethodiscalledmulti-scaleregionproposal network(MS-RPN)whichcangeneratesuitablefeaturemapsfortheregionproposalnetwork.In MS-RPN,theselectedfeaturemapsatmultiplescalesarefineturnedrespectivelyandcompressed intoauniformspace.Thegeneratedfusionfeaturemapsarecalledrefinedfusionfeatures(RFFs). RFFsincorporateabundantdetailinformationandcontextinformation.AndRFFsaresenttoRPN togeneratebetterregionproposals.TheproposedapproachisevaluatedonPASCALVOC2007 andMSCOCObenchmarktasks.MS-RPNobtainssignificantimprovementsoverthecomparable state-of-the-artdetectionmodels. KeyWORDS Fusion Feature, Multi-Scale, Object Detecting, Region Proposal Network\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":\"23 1\",\"pages\":\"132-145\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.2020070107\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.2020070107","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 4
引用
批量引用
A Novel Multi-Scale Feature Fusion Method for Region Proposal Network in Fast Object Detection
Neuralnetworkmodelshavebeenwidelyusedinthefieldofobjectdetecting.Theregionproposal methodsarewidelyusedinthecurrentobjectdetectionnetworksandhaveachievedwellperformance. Thecommonregionproposalmethodshunttheobjectsbygeneratingthousandsofthecandidate boxes.Compared toother regionproposalmethods, the regionproposalnetwork (RPN)method improvestheaccuracyanddetectionspeedwithseveralhundredcandidateboxes.However,sincethe featuremapscontainsinsufficientinformation,theabilityofRPNtodetectandlocatesmall-sized objectsispoor.Anovelmulti-scalefeaturefusionmethodforregionproposalnetworktosolvethe aboveproblemsisproposedinthisarticle.Theproposedmethodiscalledmulti-scaleregionproposal network(MS-RPN)whichcangeneratesuitablefeaturemapsfortheregionproposalnetwork.In MS-RPN,theselectedfeaturemapsatmultiplescalesarefineturnedrespectivelyandcompressed intoauniformspace.Thegeneratedfusionfeaturemapsarecalledrefinedfusionfeatures(RFFs). RFFsincorporateabundantdetailinformationandcontextinformation.AndRFFsaresenttoRPN togeneratebetterregionproposals.TheproposedapproachisevaluatedonPASCALVOC2007 andMSCOCObenchmarktasks.MS-RPNobtainssignificantimprovementsoverthecomparable state-of-the-artdetectionmodels. KeyWORDS Fusion Feature, Multi-Scale, Object Detecting, Region Proposal Network