Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, Heming Cui
{"title":"APUS:基于RDMA的快速可扩展paxos","authors":"Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, Heming Cui","doi":"10.1145/3127479.3128609","DOIUrl":null,"url":null,"abstract":"State machine replication (SMR) uses Paxos to enforce the same inputs for a program (e.g., Redis) replicated on a number of hosts, tolerating various types of failures. Unfortunately, traditional Paxos protocols incur prohibitive performance overhead on server programs due to their high consensus latency on TCP/IP. Worse, the consensus latency of extant Paxos protocols increases drastically when more concurrent client connections or hosts are added. This paper presents APUS, the first RDMA-based Paxos protocol that aims to be fast and scalable to client connections and hosts. APUS intercepts inbound socket calls of an unmodified server program, assigns a total order for all input requests, and uses fast RDMA primitives to replicate these requests concurrently. We evaluated APUS on nine widely-used server programs (e.g., Redis and MySQL). APUS incurred a mean overhead of 4.3% in response time and 4.2% in throughput. We integrated APUS with an SMR system Calvin. Our Calvin-APUS integration was 8.2X faster than the extant Calvin-ZooKeeper integration. The consensus latency of APUS outperformed an RDMA-based consensus protocol by 4.9X. APUS source code and raw results are released on github.com/hku-systems/apus.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"APUS: fast and scalable paxos on RDMA\",\"authors\":\"Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, Heming Cui\",\"doi\":\"10.1145/3127479.3128609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State machine replication (SMR) uses Paxos to enforce the same inputs for a program (e.g., Redis) replicated on a number of hosts, tolerating various types of failures. Unfortunately, traditional Paxos protocols incur prohibitive performance overhead on server programs due to their high consensus latency on TCP/IP. Worse, the consensus latency of extant Paxos protocols increases drastically when more concurrent client connections or hosts are added. This paper presents APUS, the first RDMA-based Paxos protocol that aims to be fast and scalable to client connections and hosts. APUS intercepts inbound socket calls of an unmodified server program, assigns a total order for all input requests, and uses fast RDMA primitives to replicate these requests concurrently. We evaluated APUS on nine widely-used server programs (e.g., Redis and MySQL). APUS incurred a mean overhead of 4.3% in response time and 4.2% in throughput. We integrated APUS with an SMR system Calvin. Our Calvin-APUS integration was 8.2X faster than the extant Calvin-ZooKeeper integration. The consensus latency of APUS outperformed an RDMA-based consensus protocol by 4.9X. APUS source code and raw results are released on github.com/hku-systems/apus.\",\"PeriodicalId\":20679,\"journal\":{\"name\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3127479.3128609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3128609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
State machine replication (SMR) uses Paxos to enforce the same inputs for a program (e.g., Redis) replicated on a number of hosts, tolerating various types of failures. Unfortunately, traditional Paxos protocols incur prohibitive performance overhead on server programs due to their high consensus latency on TCP/IP. Worse, the consensus latency of extant Paxos protocols increases drastically when more concurrent client connections or hosts are added. This paper presents APUS, the first RDMA-based Paxos protocol that aims to be fast and scalable to client connections and hosts. APUS intercepts inbound socket calls of an unmodified server program, assigns a total order for all input requests, and uses fast RDMA primitives to replicate these requests concurrently. We evaluated APUS on nine widely-used server programs (e.g., Redis and MySQL). APUS incurred a mean overhead of 4.3% in response time and 4.2% in throughput. We integrated APUS with an SMR system Calvin. Our Calvin-APUS integration was 8.2X faster than the extant Calvin-ZooKeeper integration. The consensus latency of APUS outperformed an RDMA-based consensus protocol by 4.9X. APUS source code and raw results are released on github.com/hku-systems/apus.