R. Abuter, M. Accardo, T. Adler, A. Amorim, N. Anugu, G. Ávila, M. Bauböck, M. Benisty, J. Berger, J. Bestenlehner, H. Beust, N. Blind, M. Bonnefoy, H. Bonnet, P. Bourget, J. Bouvier, W. Brandner, R. Brast, A. Buron, L. Burtscher, F. Cantalloube, A. C. O. Garatti, P. Caselli, F. Cassaing, F. Chapron, B. Charnay, É. Choquet, Y. Clénet, C. Collin, V. C. Foresto, R. Davies, C. Deen, F. Delplancke-Ströbele, R. Dembet, F. Dérie, W. D. Wit, J. Dexter, T. Zeeuw, C. Dougados, G. Dubus, G. Duvert, M. Ebert, A. Eckart, F. Eisenhauer, M. Esselborn, F. Eupen, P. Fédou, M. Ferreira, G. Finger, N. F. Schreiber, F. Gao, C. G. Dabo, R. G. López, P. Garcia, E. Gendron, R. Genzel, O. Gerhard, J. Gil, S. Gillessen, F. Gonté, P. Gordo, D. Gratadour, A. Greenbaum, R. Grellmann, U. Grözinger, P. Guajardo, S. Guieu, M. Habibi, P. Haguenauer, O. Hans, X. Haubois, M. Haug, F. Haussmann, T. Henning, S. Hippler, S. Hönig, M. Horrobin, A. Huber, Z. Hubert, N. Hubin, C. Hummel, G. Jakob, A. Janssen, A. Rosales, L. Jochum, L. Jocou, J
{"title":"重力作用下的最高角分辨率图像:船底座η星的情况","authors":"R. Abuter, M. Accardo, T. Adler, A. Amorim, N. Anugu, G. Ávila, M. Bauböck, M. Benisty, J. Berger, J. Bestenlehner, H. Beust, N. Blind, M. Bonnefoy, H. Bonnet, P. Bourget, J. Bouvier, W. Brandner, R. Brast, A. Buron, L. Burtscher, F. Cantalloube, A. C. O. Garatti, P. Caselli, F. Cassaing, F. Chapron, B. Charnay, É. Choquet, Y. Clénet, C. Collin, V. C. Foresto, R. Davies, C. Deen, F. Delplancke-Ströbele, R. Dembet, F. Dérie, W. D. Wit, J. Dexter, T. Zeeuw, C. Dougados, G. Dubus, G. Duvert, M. Ebert, A. Eckart, F. Eisenhauer, M. Esselborn, F. Eupen, P. Fédou, M. Ferreira, G. Finger, N. F. Schreiber, F. Gao, C. G. Dabo, R. G. López, P. Garcia, E. Gendron, R. Genzel, O. Gerhard, J. Gil, S. Gillessen, F. Gonté, P. Gordo, D. Gratadour, A. Greenbaum, R. Grellmann, U. Grözinger, P. Guajardo, S. Guieu, M. Habibi, P. Haguenauer, O. Hans, X. Haubois, M. Haug, F. Haussmann, T. Henning, S. Hippler, S. Hönig, M. Horrobin, A. Huber, Z. Hubert, N. Hubin, C. Hummel, G. Jakob, A. Janssen, A. Rosales, L. Jochum, L. Jocou, J","doi":"10.18727/0722-6691/5170","DOIUrl":null,"url":null,"abstract":"Blondin, J. M. 1994, ApJ, 435, 756 Blundell, K. et al. 2001, ApJ, 562, L79 Fabrika, S. 2004, Space Science Reviews, 12, 1 GRAVITY Collaboration et al. 2017a, ApJ, 844, 177 GRAVITY Collaboration et al. 2017b, A&A, 602, L11 Kaper, L. et al. 2006, A&A, 457, 595 Leahy, D. & Kostka, M. 2008, MNRAS, 384, 747 Margon, B. et al. 1979, ApJ, 233, L63 Milgrom, M. 1979, A&A, 78, L9 Waisberg, I. et al. 2019a, A&A, 623, A47 Waisberg, I. et al. 2019b, A&A, 624, A127 of the stellar wind facing the compact object. In addition, asymmetries revealed by the differential visibility phases across the emission lines may point to an additional component, possibly a stream of enhanced density which has been posited to exist in the system from the analysis of X-ray light curves (Leahy & Kotska, 2008). Further observations at different orbital phases could take advantage of the significant eccentricity in order to disentangle intrinsic variability of the wind from the distortion caused by the pulsar accretion. The spectral differential visibilities measured by GRAVITY (GRAVITY Collaboration et al., 2017a) reveal an extended wind with a size several times the stellar radius, which is also significantly distorted — being more extended on the side that is shielded from the pulsar — and which could be caused by the X-ray ionisation 0.8","PeriodicalId":41738,"journal":{"name":"Jurnal The Messenger","volume":"3 1","pages":"31-33"},"PeriodicalIF":0.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Images at the highest angular resolution with GRAVITY: The case of η Carinae\",\"authors\":\"R. Abuter, M. Accardo, T. Adler, A. Amorim, N. Anugu, G. Ávila, M. Bauböck, M. Benisty, J. Berger, J. Bestenlehner, H. Beust, N. Blind, M. Bonnefoy, H. Bonnet, P. Bourget, J. Bouvier, W. Brandner, R. Brast, A. Buron, L. Burtscher, F. Cantalloube, A. C. O. Garatti, P. Caselli, F. Cassaing, F. Chapron, B. Charnay, É. Choquet, Y. Clénet, C. Collin, V. C. Foresto, R. Davies, C. Deen, F. Delplancke-Ströbele, R. Dembet, F. Dérie, W. D. Wit, J. Dexter, T. Zeeuw, C. Dougados, G. Dubus, G. Duvert, M. Ebert, A. Eckart, F. Eisenhauer, M. Esselborn, F. Eupen, P. Fédou, M. Ferreira, G. Finger, N. F. Schreiber, F. Gao, C. G. Dabo, R. G. López, P. Garcia, E. Gendron, R. Genzel, O. Gerhard, J. Gil, S. Gillessen, F. Gonté, P. Gordo, D. Gratadour, A. Greenbaum, R. Grellmann, U. Grözinger, P. Guajardo, S. Guieu, M. Habibi, P. Haguenauer, O. Hans, X. Haubois, M. Haug, F. Haussmann, T. Henning, S. Hippler, S. Hönig, M. Horrobin, A. Huber, Z. Hubert, N. Hubin, C. Hummel, G. Jakob, A. Janssen, A. Rosales, L. Jochum, L. Jocou, J\",\"doi\":\"10.18727/0722-6691/5170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blondin, J. M. 1994, ApJ, 435, 756 Blundell, K. et al. 2001, ApJ, 562, L79 Fabrika, S. 2004, Space Science Reviews, 12, 1 GRAVITY Collaboration et al. 2017a, ApJ, 844, 177 GRAVITY Collaboration et al. 2017b, A&A, 602, L11 Kaper, L. et al. 2006, A&A, 457, 595 Leahy, D. & Kostka, M. 2008, MNRAS, 384, 747 Margon, B. et al. 1979, ApJ, 233, L63 Milgrom, M. 1979, A&A, 78, L9 Waisberg, I. et al. 2019a, A&A, 623, A47 Waisberg, I. et al. 2019b, A&A, 624, A127 of the stellar wind facing the compact object. In addition, asymmetries revealed by the differential visibility phases across the emission lines may point to an additional component, possibly a stream of enhanced density which has been posited to exist in the system from the analysis of X-ray light curves (Leahy & Kotska, 2008). Further observations at different orbital phases could take advantage of the significant eccentricity in order to disentangle intrinsic variability of the wind from the distortion caused by the pulsar accretion. The spectral differential visibilities measured by GRAVITY (GRAVITY Collaboration et al., 2017a) reveal an extended wind with a size several times the stellar radius, which is also significantly distorted — being more extended on the side that is shielded from the pulsar — and which could be caused by the X-ray ionisation 0.8\",\"PeriodicalId\":41738,\"journal\":{\"name\":\"Jurnal The Messenger\",\"volume\":\"3 1\",\"pages\":\"31-33\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal The Messenger\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18727/0722-6691/5170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal The Messenger","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18727/0722-6691/5170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 1
摘要
已索道起重机,j . m . 1994年,435年,756年Blundell说,k . et al . 2001年,已,562年,L79 Fabrika,美国2004年,空间科学评论,12日1重力协作et al . 2017,已,844年,177年重力协作et al . 2017 b,授权,602年,不断化解燕麦饼干,l . et al . 2006年,授权,457年,595年莱希,d & Kostka MNRAS, m . 2008年,384年,747年haut brion b . et al . 1979年,已,233年,L63米格罗姆,m . 1979年,授权,78年,L9 Waisberg, et al . 2019年,授权,623年,A47 Waisberg, et al . 2019 b,授权,624年,朝向致密天体的恒星风的A127。此外,发射线上不同可见相位所揭示的不对称性可能指向一个额外的成分,可能是x射线光曲线分析中假定存在的密度增强流(Leahy & Kotska, 2008)。在不同轨道阶段的进一步观测可以利用显著的离心率,以便将风的内在变化与脉冲星吸积引起的扭曲分开。由GRAVITY测量的光谱差异可见性(GRAVITY Collaboration et al., 2017a)揭示了一个延伸的风,其大小是恒星半径的几倍,而且也明显扭曲——在屏蔽脉冲星的一侧延伸得更大——这可能是由x射线电离0.8引起的
Images at the highest angular resolution with GRAVITY: The case of η Carinae
Blondin, J. M. 1994, ApJ, 435, 756 Blundell, K. et al. 2001, ApJ, 562, L79 Fabrika, S. 2004, Space Science Reviews, 12, 1 GRAVITY Collaboration et al. 2017a, ApJ, 844, 177 GRAVITY Collaboration et al. 2017b, A&A, 602, L11 Kaper, L. et al. 2006, A&A, 457, 595 Leahy, D. & Kostka, M. 2008, MNRAS, 384, 747 Margon, B. et al. 1979, ApJ, 233, L63 Milgrom, M. 1979, A&A, 78, L9 Waisberg, I. et al. 2019a, A&A, 623, A47 Waisberg, I. et al. 2019b, A&A, 624, A127 of the stellar wind facing the compact object. In addition, asymmetries revealed by the differential visibility phases across the emission lines may point to an additional component, possibly a stream of enhanced density which has been posited to exist in the system from the analysis of X-ray light curves (Leahy & Kotska, 2008). Further observations at different orbital phases could take advantage of the significant eccentricity in order to disentangle intrinsic variability of the wind from the distortion caused by the pulsar accretion. The spectral differential visibilities measured by GRAVITY (GRAVITY Collaboration et al., 2017a) reveal an extended wind with a size several times the stellar radius, which is also significantly distorted — being more extended on the side that is shielded from the pulsar — and which could be caused by the X-ray ionisation 0.8