{"title":"时间序列中最优变点估计","authors":"N. Chan, Wai Leong Ng, C. Yau, Haihan Yu","doi":"10.1214/20-aos2039","DOIUrl":null,"url":null,"abstract":"This paper establishes asymptotic theory for optimal estimation of change points in general time series models under α-mixing conditions. We show that the Bayes-type estimator is asymptotically minimax for change-point estimation under squared error loss. Two bootstrap procedures are developed to construct confidence intervals for the change points. An approximate limiting distribution of the change-point estimator under small change is also derived. Simulations and real data applications are presented to investigate the finite sample performance of the Bayes-type estimator and the bootstrap procedures.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal change-point estimation in time series\",\"authors\":\"N. Chan, Wai Leong Ng, C. Yau, Haihan Yu\",\"doi\":\"10.1214/20-aos2039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes asymptotic theory for optimal estimation of change points in general time series models under α-mixing conditions. We show that the Bayes-type estimator is asymptotically minimax for change-point estimation under squared error loss. Two bootstrap procedures are developed to construct confidence intervals for the change points. An approximate limiting distribution of the change-point estimator under small change is also derived. Simulations and real data applications are presented to investigate the finite sample performance of the Bayes-type estimator and the bootstrap procedures.\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/20-aos2039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-aos2039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper establishes asymptotic theory for optimal estimation of change points in general time series models under α-mixing conditions. We show that the Bayes-type estimator is asymptotically minimax for change-point estimation under squared error loss. Two bootstrap procedures are developed to construct confidence intervals for the change points. An approximate limiting distribution of the change-point estimator under small change is also derived. Simulations and real data applications are presented to investigate the finite sample performance of the Bayes-type estimator and the bootstrap procedures.