M. Baur, T. Jagdhuber, M. Link, M. Piles, D. Entekhabi, A. Fink
{"title":"利用smap辐射计和ICESat激光雷达数据估算植被损失系数和冠层穿透深度","authors":"M. Baur, T. Jagdhuber, M. Link, M. Piles, D. Entekhabi, A. Fink","doi":"10.1109/igarss.2017.8127602","DOIUrl":null,"url":null,"abstract":"In this study the framework of the τ — ω model is used to derive vegetation loss coefficients and canopy penetration depths from SMAP multi-temporal retrievals of vegetation optical depth, single scattering albedo and ICESat lidar vegetation heights. The vegetation loss coefficients serve as a global indicator of how strong absorption and scattering processes attenuate L-band microwave radiation. By inverting the vegetation loss coefficients, penetration depths into the canopy can be obtained, which are displayed for the global forest reservoirs. A simple penetration index is formed combining vegetation heights and penetration depth estimates. The distribution and level of this index reveal that for densely forested areas in the tropics the soil signal is attenuated considerably, and this attenuation must be carefully accounted for in soil moisture retrieval algorithms.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"68 1","pages":"2891-2894"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimation of vegetation loss coefficients and canopy penetration depths from smap radiometer and ICESat lidar data\",\"authors\":\"M. Baur, T. Jagdhuber, M. Link, M. Piles, D. Entekhabi, A. Fink\",\"doi\":\"10.1109/igarss.2017.8127602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study the framework of the τ — ω model is used to derive vegetation loss coefficients and canopy penetration depths from SMAP multi-temporal retrievals of vegetation optical depth, single scattering albedo and ICESat lidar vegetation heights. The vegetation loss coefficients serve as a global indicator of how strong absorption and scattering processes attenuate L-band microwave radiation. By inverting the vegetation loss coefficients, penetration depths into the canopy can be obtained, which are displayed for the global forest reservoirs. A simple penetration index is formed combining vegetation heights and penetration depth estimates. The distribution and level of this index reveal that for densely forested areas in the tropics the soil signal is attenuated considerably, and this attenuation must be carefully accounted for in soil moisture retrieval algorithms.\",\"PeriodicalId\":6466,\"journal\":{\"name\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"68 1\",\"pages\":\"2891-2894\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/igarss.2017.8127602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/igarss.2017.8127602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimation of vegetation loss coefficients and canopy penetration depths from smap radiometer and ICESat lidar data
In this study the framework of the τ — ω model is used to derive vegetation loss coefficients and canopy penetration depths from SMAP multi-temporal retrievals of vegetation optical depth, single scattering albedo and ICESat lidar vegetation heights. The vegetation loss coefficients serve as a global indicator of how strong absorption and scattering processes attenuate L-band microwave radiation. By inverting the vegetation loss coefficients, penetration depths into the canopy can be obtained, which are displayed for the global forest reservoirs. A simple penetration index is formed combining vegetation heights and penetration depth estimates. The distribution and level of this index reveal that for densely forested areas in the tropics the soil signal is attenuated considerably, and this attenuation must be carefully accounted for in soil moisture retrieval algorithms.