玻璃板小直径钻孔电镀金刚石刀具钻头形状对加工液流动和切屑放电的影响

Tappei Oyamada, A. Mizobuchi, T. Ishida
{"title":"玻璃板小直径钻孔电镀金刚石刀具钻头形状对加工液流动和切屑放电的影响","authors":"Tappei Oyamada, A. Mizobuchi, T. Ishida","doi":"10.20965/ijat.2023.p0032","DOIUrl":null,"url":null,"abstract":"Our laboratory has been exploring the development of tools for drilling holes in glass plates, and the drilling techniques to be adopted for it. A devised tool shape that could prevent the occurrence of cracks at the exit holes achieved high quality through hole drilling of 100 holes or more using only the drilling cycle. However, crack-free drilling beyond this number of holes cannot be performed. This is due to the adhesion of the residual chip on the tool surface when the number of holes increases. Therefore, further improvement of chip discharge is needed to achieve crack-free drilling. In this report, we consider that chip discharge results from the flow of the machining fluid. To investigate the cause of chip discharge, we analyzed the flow of the machining fluid in the hole using computational fluid dynamics and the supposed chip discharge conditions. The results obtained in this study are summarized as follows. (1) In the case of a cylindrical tool, the Z-axis directional flow of the machining fluid did not occur in the hole. This is because the tool does not have bumps to agitate the fluid on the side, and the gap between the tool and the inner surface of the hole is narrow. (2) The plate side widened the gap between the tool and inner surface of the hole. Therefore, the fluid was likely to flow in the Z-axis direction in the hole. (3) For the tool with the plane side bit, the flow entered the hole from one plane side and exited the hole from the other plane side. (4) When the tool end is spherical, the Z-axis directional flow of the fluid occurs at the tool end. (5) The fluid flow of the devised tool weakened as the drilling depth increased. To improve the chip discharge performance of the designed tool, the Z-axis directional flow of the machining fluid must occur in an area deeper than 2 mm.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"1 1","pages":"32-39"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Bit Shape of Electroplated Diamond Tool Used for Drilling Small Diameter Holes in Glass Plate on Machining Fluid Flow and Chip Discharge\",\"authors\":\"Tappei Oyamada, A. Mizobuchi, T. Ishida\",\"doi\":\"10.20965/ijat.2023.p0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our laboratory has been exploring the development of tools for drilling holes in glass plates, and the drilling techniques to be adopted for it. A devised tool shape that could prevent the occurrence of cracks at the exit holes achieved high quality through hole drilling of 100 holes or more using only the drilling cycle. However, crack-free drilling beyond this number of holes cannot be performed. This is due to the adhesion of the residual chip on the tool surface when the number of holes increases. Therefore, further improvement of chip discharge is needed to achieve crack-free drilling. In this report, we consider that chip discharge results from the flow of the machining fluid. To investigate the cause of chip discharge, we analyzed the flow of the machining fluid in the hole using computational fluid dynamics and the supposed chip discharge conditions. The results obtained in this study are summarized as follows. (1) In the case of a cylindrical tool, the Z-axis directional flow of the machining fluid did not occur in the hole. This is because the tool does not have bumps to agitate the fluid on the side, and the gap between the tool and the inner surface of the hole is narrow. (2) The plate side widened the gap between the tool and inner surface of the hole. Therefore, the fluid was likely to flow in the Z-axis direction in the hole. (3) For the tool with the plane side bit, the flow entered the hole from one plane side and exited the hole from the other plane side. (4) When the tool end is spherical, the Z-axis directional flow of the fluid occurs at the tool end. (5) The fluid flow of the devised tool weakened as the drilling depth increased. To improve the chip discharge performance of the designed tool, the Z-axis directional flow of the machining fluid must occur in an area deeper than 2 mm.\",\"PeriodicalId\":13583,\"journal\":{\"name\":\"Int. J. Autom. Technol.\",\"volume\":\"1 1\",\"pages\":\"32-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Autom. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2023.p0032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Autom. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2023.p0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们实验室一直在探索开发用于在玻璃板上钻孔的工具,以及采用的钻孔技术。设计了一种可以防止出口孔出现裂纹的工具形状,仅使用一个钻孔周期就可以实现100孔或更多的高质量通孔钻孔。然而,超过这个孔数的无裂纹钻孔是无法进行的。这是由于当孔数增加时,残留的切屑粘附在刀具表面。因此,要实现无裂纹钻进,还需进一步提高出屑量。在本报告中,我们认为切屑放电是加工液流动的结果。为了探讨切屑放电的原因,利用计算流体力学方法和假设的切屑放电条件,对加工液在孔内的流动进行了分析。本研究所得结果总结如下:(1)在圆柱刀具的情况下,加工液在孔内不发生z轴定向流动。这是因为该工具在侧面没有颠簸来搅动流体,并且工具与孔内表面之间的间隙很窄。(2)板侧加宽了刀具与孔内表面的间隙。因此,流体很可能在井内沿z轴方向流动。(3)对于平面侧钻头的刀具,气流从一个平面侧进入孔内,从另一个平面侧流出孔内。(4)当刀端为球形时,流体在刀端发生z轴定向流动。(5)随着钻井深度的增加,所设计工具的流体流动减弱。为了提高所设计刀具的排屑性能,加工流体的z轴定向流动必须发生在深度大于2mm的区域内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Bit Shape of Electroplated Diamond Tool Used for Drilling Small Diameter Holes in Glass Plate on Machining Fluid Flow and Chip Discharge
Our laboratory has been exploring the development of tools for drilling holes in glass plates, and the drilling techniques to be adopted for it. A devised tool shape that could prevent the occurrence of cracks at the exit holes achieved high quality through hole drilling of 100 holes or more using only the drilling cycle. However, crack-free drilling beyond this number of holes cannot be performed. This is due to the adhesion of the residual chip on the tool surface when the number of holes increases. Therefore, further improvement of chip discharge is needed to achieve crack-free drilling. In this report, we consider that chip discharge results from the flow of the machining fluid. To investigate the cause of chip discharge, we analyzed the flow of the machining fluid in the hole using computational fluid dynamics and the supposed chip discharge conditions. The results obtained in this study are summarized as follows. (1) In the case of a cylindrical tool, the Z-axis directional flow of the machining fluid did not occur in the hole. This is because the tool does not have bumps to agitate the fluid on the side, and the gap between the tool and the inner surface of the hole is narrow. (2) The plate side widened the gap between the tool and inner surface of the hole. Therefore, the fluid was likely to flow in the Z-axis direction in the hole. (3) For the tool with the plane side bit, the flow entered the hole from one plane side and exited the hole from the other plane side. (4) When the tool end is spherical, the Z-axis directional flow of the fluid occurs at the tool end. (5) The fluid flow of the devised tool weakened as the drilling depth increased. To improve the chip discharge performance of the designed tool, the Z-axis directional flow of the machining fluid must occur in an area deeper than 2 mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advantages of Injection Mold with Hybrid Process of Metal Powder Bed Fusion and Subtractive Process Experimental Investigation of Spatter Particle Behavior and Improvement in Build Quality in PBF-LB Process Planning with Removal of Melting Penetration and Temper Colors in 5-Axis Hybrid Additive and Subtractive Manufacturing Technique for Introducing Internal Defects with Arbitrary Sizes and Locations in Metals via Additive Manufacturing and Evaluation of Fatigue Properties Editorial: Recent Trends in Additive Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1