半监督语义分割中的伪标签噪声抑制技术

S. Scherer, Robin Schön, R. Lienhart
{"title":"半监督语义分割中的伪标签噪声抑制技术","authors":"S. Scherer, Robin Schön, R. Lienhart","doi":"10.48550/arXiv.2210.10426","DOIUrl":null,"url":null,"abstract":"Semi-supervised learning (SSL) can reduce the need for large labelled datasets by incorporating unlabelled data into the training. This is particularly interesting for semantic segmentation, where labelling data is very costly and time-consuming. Current SSL approaches use an initially supervised trained model to generate predictions for unlabelled images, called pseudo-labels, which are subsequently used for training a new model from scratch. Since the predictions usually do not come from an error-free neural network, they are naturally full of errors. However, training with partially incorrect labels often reduce the final model performance. Thus, it is crucial to manage errors/noise of pseudo-labels wisely. In this work, we use three mechanisms to control pseudo-label noise and errors: (1) We construct a solid base framework by mixing images with cow-patterns on unlabelled images to reduce the negative impact of wrong pseudo-labels. Nevertheless, wrong pseudo-labels still have a negative impact on the performance. Therefore, (2) we propose a simple and effective loss weighting scheme for pseudo-labels defined by the feedback of the model trained on these pseudo-labels. This allows us to soft-weight the pseudo-label training examples based on their determined confidence score during training. (3) We also study the common practice to ignore pseudo-labels with low confidence and empirically analyse the influence and effect of pseudo-labels with different confidence ranges on SSL and the contribution of pseudo-label filtering to the achievable performance gains. We show that our method performs superior to state of-the-art alternatives on various datasets. Furthermore, we show that our findings also transfer to other tasks such as human pose estimation. Our code is available at https://github.com/ChristmasFan/SSL_Denoising_Segmentation.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"11 1","pages":"829"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic Segmentation\",\"authors\":\"S. Scherer, Robin Schön, R. Lienhart\",\"doi\":\"10.48550/arXiv.2210.10426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-supervised learning (SSL) can reduce the need for large labelled datasets by incorporating unlabelled data into the training. This is particularly interesting for semantic segmentation, where labelling data is very costly and time-consuming. Current SSL approaches use an initially supervised trained model to generate predictions for unlabelled images, called pseudo-labels, which are subsequently used for training a new model from scratch. Since the predictions usually do not come from an error-free neural network, they are naturally full of errors. However, training with partially incorrect labels often reduce the final model performance. Thus, it is crucial to manage errors/noise of pseudo-labels wisely. In this work, we use three mechanisms to control pseudo-label noise and errors: (1) We construct a solid base framework by mixing images with cow-patterns on unlabelled images to reduce the negative impact of wrong pseudo-labels. Nevertheless, wrong pseudo-labels still have a negative impact on the performance. Therefore, (2) we propose a simple and effective loss weighting scheme for pseudo-labels defined by the feedback of the model trained on these pseudo-labels. This allows us to soft-weight the pseudo-label training examples based on their determined confidence score during training. (3) We also study the common practice to ignore pseudo-labels with low confidence and empirically analyse the influence and effect of pseudo-labels with different confidence ranges on SSL and the contribution of pseudo-label filtering to the achievable performance gains. We show that our method performs superior to state of-the-art alternatives on various datasets. Furthermore, we show that our findings also transfer to other tasks such as human pose estimation. Our code is available at https://github.com/ChristmasFan/SSL_Denoising_Segmentation.\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"11 1\",\"pages\":\"829\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.10426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.10426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

半监督学习(SSL)可以通过将未标记的数据合并到训练中来减少对大型标记数据集的需求。这对于语义分割来说特别有趣,因为标记数据非常昂贵且耗时。当前的SSL方法使用初始监督训练模型来生成未标记图像的预测,称为伪标签,随后用于从头开始训练新模型。由于预测通常不是来自无错误的神经网络,因此它们自然充满了错误。然而,使用部分不正确的标签进行训练通常会降低最终的模型性能。因此,明智地管理伪标签的错误/噪声是至关重要的。在这项工作中,我们使用了三种机制来控制伪标签噪声和错误:(1)我们通过在未标记的图像上混合带有奶牛图案的图像来构建坚实的基础框架,以减少错误伪标签的负面影响。然而,错误的伪标签仍然会对性能产生负面影响。因此,(2)我们提出了一种简单有效的伪标签损失加权方案,该方案由这些伪标签训练的模型的反馈来定义。这允许我们在训练过程中根据伪标签训练示例确定的置信度得分对其进行软加权。(3)我们还研究了忽略低置信度伪标签的常见做法,并实证分析了不同置信度伪标签对SSL的影响和效果,以及伪标签过滤对可实现的性能增益的贡献。我们表明,在各种数据集上,我们的方法优于最先进的替代方法。此外,我们表明我们的发现也适用于其他任务,如人体姿势估计。我们的代码可在https://github.com/ChristmasFan/SSL_Denoising_Segmentation上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic Segmentation
Semi-supervised learning (SSL) can reduce the need for large labelled datasets by incorporating unlabelled data into the training. This is particularly interesting for semantic segmentation, where labelling data is very costly and time-consuming. Current SSL approaches use an initially supervised trained model to generate predictions for unlabelled images, called pseudo-labels, which are subsequently used for training a new model from scratch. Since the predictions usually do not come from an error-free neural network, they are naturally full of errors. However, training with partially incorrect labels often reduce the final model performance. Thus, it is crucial to manage errors/noise of pseudo-labels wisely. In this work, we use three mechanisms to control pseudo-label noise and errors: (1) We construct a solid base framework by mixing images with cow-patterns on unlabelled images to reduce the negative impact of wrong pseudo-labels. Nevertheless, wrong pseudo-labels still have a negative impact on the performance. Therefore, (2) we propose a simple and effective loss weighting scheme for pseudo-labels defined by the feedback of the model trained on these pseudo-labels. This allows us to soft-weight the pseudo-label training examples based on their determined confidence score during training. (3) We also study the common practice to ignore pseudo-labels with low confidence and empirically analyse the influence and effect of pseudo-labels with different confidence ranges on SSL and the contribution of pseudo-label filtering to the achievable performance gains. We show that our method performs superior to state of-the-art alternatives on various datasets. Furthermore, we show that our findings also transfer to other tasks such as human pose estimation. Our code is available at https://github.com/ChristmasFan/SSL_Denoising_Segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Anatomically Consistent Embedding for Chest Radiography. Single Pixel Spectral Color Constancy DiffSketching: Sketch Control Image Synthesis with Diffusion Models Defect Transfer GAN: Diverse Defect Synthesis for Data Augmentation Mitigating Bias in Visual Transformers via Targeted Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1