{"title":"从多样性预测到更好的本体与模式匹配","authors":"A. Gal, Haggai Roitman, Tomer Sagi","doi":"10.1145/2872427.2882999","DOIUrl":null,"url":null,"abstract":"Ontology & schema matching predictors assess the quality of matchers in the absence of an exact match. We propose MCD (Match Competitor Deviation), a new diversity-based predictor that compares the strength of a matcher confidence in the correspondence of a concept pair with respect to other correspondences that involve either concept. We also propose to use MCD as a regulator to optimally control a balance between Precision and Recall and use it towards 1:1 matching by combining it with a similarity measure that is based on solving a maximum weight bipartite graph matching (MWBM). Optimizing the combined measure is known to be an NP-Hard problem. Therefore, we propose CEM, an approximation to an optimal match by efficiently scanning multiple possible matches, using rare event estimation. Using a thorough empirical study over several benchmark real-world datasets, we show that MCD outperforms other state-of-the-art predictor and that CEM significantly outperform existing matchers.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"From Diversity-based Prediction to Better Ontology & Schema Matching\",\"authors\":\"A. Gal, Haggai Roitman, Tomer Sagi\",\"doi\":\"10.1145/2872427.2882999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ontology & schema matching predictors assess the quality of matchers in the absence of an exact match. We propose MCD (Match Competitor Deviation), a new diversity-based predictor that compares the strength of a matcher confidence in the correspondence of a concept pair with respect to other correspondences that involve either concept. We also propose to use MCD as a regulator to optimally control a balance between Precision and Recall and use it towards 1:1 matching by combining it with a similarity measure that is based on solving a maximum weight bipartite graph matching (MWBM). Optimizing the combined measure is known to be an NP-Hard problem. Therefore, we propose CEM, an approximation to an optimal match by efficiently scanning multiple possible matches, using rare event estimation. Using a thorough empirical study over several benchmark real-world datasets, we show that MCD outperforms other state-of-the-art predictor and that CEM significantly outperform existing matchers.\",\"PeriodicalId\":20455,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2872427.2882999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2882999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From Diversity-based Prediction to Better Ontology & Schema Matching
Ontology & schema matching predictors assess the quality of matchers in the absence of an exact match. We propose MCD (Match Competitor Deviation), a new diversity-based predictor that compares the strength of a matcher confidence in the correspondence of a concept pair with respect to other correspondences that involve either concept. We also propose to use MCD as a regulator to optimally control a balance between Precision and Recall and use it towards 1:1 matching by combining it with a similarity measure that is based on solving a maximum weight bipartite graph matching (MWBM). Optimizing the combined measure is known to be an NP-Hard problem. Therefore, we propose CEM, an approximation to an optimal match by efficiently scanning multiple possible matches, using rare event estimation. Using a thorough empirical study over several benchmark real-world datasets, we show that MCD outperforms other state-of-the-art predictor and that CEM significantly outperform existing matchers.