固态饱和后PLA-CO2混合物的玻璃化转变

IF 3.2 4区 工程技术 Q2 CHEMISTRY, APPLIED Journal of Cellular Plastics Pub Date : 2022-11-01 DOI:10.1177/0021955X221144543
Christian Brütting, J. Dreier, C. Bonten, V. Altstädt, H. Ruckdäschel
{"title":"固态饱和后PLA-CO2混合物的玻璃化转变","authors":"Christian Brütting, J. Dreier, C. Bonten, V. Altstädt, H. Ruckdäschel","doi":"10.1177/0021955X221144543","DOIUrl":null,"url":null,"abstract":"Polymer foams offer high sustainable performance in terms of their lightweight potential, insulation and high specific mechanical properties. The foaming of polymers depends on the properties of gas-laden solids or liquids. For foaming in the solid state, the foaming temperature must be higher than the glass transition temperature of the saturated polymer system. Moreover, the knowledge of sorption conditions and thermal properties is crucial for foam formation. In this study, the correlation between the glass transition temperature and the sorption conditions was investigated. This comparison was made by determining the sorption behavior for different pressure levels and the corresponding glass transition temperature using a high-pressure differential scanning calorimetry. The time, pressure and CO2 content were varied. For the first time, the Chow model could be verified for PLA with a coordination number of 3.","PeriodicalId":15236,"journal":{"name":"Journal of Cellular Plastics","volume":"19 1","pages":"917 - 931"},"PeriodicalIF":3.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glass transition of PLA-CO2 mixtures after solid-state saturation\",\"authors\":\"Christian Brütting, J. Dreier, C. Bonten, V. Altstädt, H. Ruckdäschel\",\"doi\":\"10.1177/0021955X221144543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymer foams offer high sustainable performance in terms of their lightweight potential, insulation and high specific mechanical properties. The foaming of polymers depends on the properties of gas-laden solids or liquids. For foaming in the solid state, the foaming temperature must be higher than the glass transition temperature of the saturated polymer system. Moreover, the knowledge of sorption conditions and thermal properties is crucial for foam formation. In this study, the correlation between the glass transition temperature and the sorption conditions was investigated. This comparison was made by determining the sorption behavior for different pressure levels and the corresponding glass transition temperature using a high-pressure differential scanning calorimetry. The time, pressure and CO2 content were varied. For the first time, the Chow model could be verified for PLA with a coordination number of 3.\",\"PeriodicalId\":15236,\"journal\":{\"name\":\"Journal of Cellular Plastics\",\"volume\":\"19 1\",\"pages\":\"917 - 931\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Plastics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0021955X221144543\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Plastics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0021955X221144543","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

聚合物泡沫在轻量化、绝缘和高比机械性能方面具有很高的可持续性能。聚合物的发泡取决于含气固体或液体的性质。对于固态发泡,发泡温度必须高于饱和聚合物体系的玻璃化转变温度。此外,吸附条件和热性质的知识是泡沫形成的关键。研究了玻璃化转变温度与吸附条件的关系。通过使用高压差示扫描量热法测定不同压力水平下的吸附行为和相应的玻璃化转变温度,进行了比较。时间、压力和CO2含量不同。第一次,Chow模型可以被PLA以3的协调数验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Glass transition of PLA-CO2 mixtures after solid-state saturation
Polymer foams offer high sustainable performance in terms of their lightweight potential, insulation and high specific mechanical properties. The foaming of polymers depends on the properties of gas-laden solids or liquids. For foaming in the solid state, the foaming temperature must be higher than the glass transition temperature of the saturated polymer system. Moreover, the knowledge of sorption conditions and thermal properties is crucial for foam formation. In this study, the correlation between the glass transition temperature and the sorption conditions was investigated. This comparison was made by determining the sorption behavior for different pressure levels and the corresponding glass transition temperature using a high-pressure differential scanning calorimetry. The time, pressure and CO2 content were varied. For the first time, the Chow model could be verified for PLA with a coordination number of 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cellular Plastics
Journal of Cellular Plastics 工程技术-高分子科学
CiteScore
5.00
自引率
16.00%
发文量
19
审稿时长
3 months
期刊介绍: The Journal of Cellular Plastics is a fully peer reviewed international journal that publishes original research and review articles covering the latest advances in foamed plastics technology.
期刊最新文献
I-WP geometry structural assessment: A theoretical, experimental, and numerical analysis Foam density measurement using a 3D scanner Effect of temperature on the mechanical behavior of pvc foams Preparation and energy absorption of flexible polyurethane foam with hollow glass microsphere A review on the mechanical behaviour of microcellular and nanocellular polymeric foams: What is the effect of the cell size reduction?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1