{"title":"资产完整性管理-前端加载阶段的实施计划","authors":"G. Ferrario, Salvatore Grimaldi","doi":"10.2118/207756-ms","DOIUrl":null,"url":null,"abstract":"\n Capitalization of lessons learned on Asset Integrity Management during Front End Loading phases of a green field Project Development, by defining plan for implementation of a diagnostic digital tool for reducing downtime and introduce predictive maintenance during Operation.\n Eni developed a platform of Digital applications for enhanced Operations management by implementing an Integrated Asset Management (IAM) system. Advanced Analytics tool is part of it and is designed for monitoring, foreseeing and preventing production upsets and anomalies; the tool is set up by verification of areas of interest and criticalities, with identification of main equipment data sets and by the implementation and validation of predictive models. Starting from historical data, data scientists supported by experts develop algorithms capable of finding interdependencies between a set of input variables and an output variable (phenomenon to be predicted/monitored), thus detecting anomalies and criticalities.\n Main areas of benefit are envisaged on Production continuity, capable of predicting problems on static and rotating equipment and giving information on the most impacting variables on the incipient problems. The tool will support technicians to help them preventing failures and out-of-specs events which may cause loss of production or asset integrity issues, with the activation of predictive maintenance and the aim to strive a continuous monitoring and improvement of plant operational performances. An Energy Efficiency predictive model will also be set up, capable of forecasting the future energy performances of the asset through the prediction of the Stationary Combustion of Carbon Dioxide (CO2) emission index (t CO2/kbbl) and providing the list of the main influencing equipment and variables. The plan for implementation of the tool from the Early phases of development help the organization on prioritizing the implementation of Digital tools as part of the execution and realization of the Asset to be delivered to the Operational personnel, by easing the transition and avoiding subsequent retrofitting carrying brownfield works and additional costs.\n The implementation of Advanced Analytics tool has been embedded in a new green field initiative of a Development Project since Front End Loading phases, thus fostering digital implementation and minimizing deployment costs by including those as part of the Investment Proposal presented to Joint Venture Partners and Authorities.","PeriodicalId":10959,"journal":{"name":"Day 3 Wed, November 17, 2021","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asset Integrity Management - Implementation Plan During Front End Loading Phases\",\"authors\":\"G. Ferrario, Salvatore Grimaldi\",\"doi\":\"10.2118/207756-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Capitalization of lessons learned on Asset Integrity Management during Front End Loading phases of a green field Project Development, by defining plan for implementation of a diagnostic digital tool for reducing downtime and introduce predictive maintenance during Operation.\\n Eni developed a platform of Digital applications for enhanced Operations management by implementing an Integrated Asset Management (IAM) system. Advanced Analytics tool is part of it and is designed for monitoring, foreseeing and preventing production upsets and anomalies; the tool is set up by verification of areas of interest and criticalities, with identification of main equipment data sets and by the implementation and validation of predictive models. Starting from historical data, data scientists supported by experts develop algorithms capable of finding interdependencies between a set of input variables and an output variable (phenomenon to be predicted/monitored), thus detecting anomalies and criticalities.\\n Main areas of benefit are envisaged on Production continuity, capable of predicting problems on static and rotating equipment and giving information on the most impacting variables on the incipient problems. The tool will support technicians to help them preventing failures and out-of-specs events which may cause loss of production or asset integrity issues, with the activation of predictive maintenance and the aim to strive a continuous monitoring and improvement of plant operational performances. An Energy Efficiency predictive model will also be set up, capable of forecasting the future energy performances of the asset through the prediction of the Stationary Combustion of Carbon Dioxide (CO2) emission index (t CO2/kbbl) and providing the list of the main influencing equipment and variables. The plan for implementation of the tool from the Early phases of development help the organization on prioritizing the implementation of Digital tools as part of the execution and realization of the Asset to be delivered to the Operational personnel, by easing the transition and avoiding subsequent retrofitting carrying brownfield works and additional costs.\\n The implementation of Advanced Analytics tool has been embedded in a new green field initiative of a Development Project since Front End Loading phases, thus fostering digital implementation and minimizing deployment costs by including those as part of the Investment Proposal presented to Joint Venture Partners and Authorities.\",\"PeriodicalId\":10959,\"journal\":{\"name\":\"Day 3 Wed, November 17, 2021\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, November 17, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207756-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207756-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asset Integrity Management - Implementation Plan During Front End Loading Phases
Capitalization of lessons learned on Asset Integrity Management during Front End Loading phases of a green field Project Development, by defining plan for implementation of a diagnostic digital tool for reducing downtime and introduce predictive maintenance during Operation.
Eni developed a platform of Digital applications for enhanced Operations management by implementing an Integrated Asset Management (IAM) system. Advanced Analytics tool is part of it and is designed for monitoring, foreseeing and preventing production upsets and anomalies; the tool is set up by verification of areas of interest and criticalities, with identification of main equipment data sets and by the implementation and validation of predictive models. Starting from historical data, data scientists supported by experts develop algorithms capable of finding interdependencies between a set of input variables and an output variable (phenomenon to be predicted/monitored), thus detecting anomalies and criticalities.
Main areas of benefit are envisaged on Production continuity, capable of predicting problems on static and rotating equipment and giving information on the most impacting variables on the incipient problems. The tool will support technicians to help them preventing failures and out-of-specs events which may cause loss of production or asset integrity issues, with the activation of predictive maintenance and the aim to strive a continuous monitoring and improvement of plant operational performances. An Energy Efficiency predictive model will also be set up, capable of forecasting the future energy performances of the asset through the prediction of the Stationary Combustion of Carbon Dioxide (CO2) emission index (t CO2/kbbl) and providing the list of the main influencing equipment and variables. The plan for implementation of the tool from the Early phases of development help the organization on prioritizing the implementation of Digital tools as part of the execution and realization of the Asset to be delivered to the Operational personnel, by easing the transition and avoiding subsequent retrofitting carrying brownfield works and additional costs.
The implementation of Advanced Analytics tool has been embedded in a new green field initiative of a Development Project since Front End Loading phases, thus fostering digital implementation and minimizing deployment costs by including those as part of the Investment Proposal presented to Joint Venture Partners and Authorities.