{"title":"基于贝叶斯学习的MIMO上行链路C-RAN用户活动和数据检测","authors":"Anupama Rajoriya, Vidushi Katiyar, Rohit Budhiraja","doi":"10.23919/Eusipco47968.2020.9287867","DOIUrl":null,"url":null,"abstract":"We investigate user activity and data detection problem in a multiple-input multiple-output uplink cloud-radio access network, where the data matrix over a time-frame has overlapped burst sparsity due to sporadic user activity. We exploit this sparsity to recover data by proposing a weighted prior-sparse Bayesian learning algorithm. The proposed algorithm, due to carefully selected prior, captures not only the overlapped burst sparsity across time but also the block sparsity due to multi-user antennas. We also derive hyperparameter updates, and estimate the weight parameters using the support estimated via index-wise log-likelihood ratio test. We numerically demonstrate that the proposed algorithm has much lower bit error rate than the state-of-the-art competing algorithms.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"21 1","pages":"1742-1746"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"User Activity And Data Detection For MIMO Uplink C-RAN Using Bayesian Learning\",\"authors\":\"Anupama Rajoriya, Vidushi Katiyar, Rohit Budhiraja\",\"doi\":\"10.23919/Eusipco47968.2020.9287867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate user activity and data detection problem in a multiple-input multiple-output uplink cloud-radio access network, where the data matrix over a time-frame has overlapped burst sparsity due to sporadic user activity. We exploit this sparsity to recover data by proposing a weighted prior-sparse Bayesian learning algorithm. The proposed algorithm, due to carefully selected prior, captures not only the overlapped burst sparsity across time but also the block sparsity due to multi-user antennas. We also derive hyperparameter updates, and estimate the weight parameters using the support estimated via index-wise log-likelihood ratio test. We numerically demonstrate that the proposed algorithm has much lower bit error rate than the state-of-the-art competing algorithms.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"21 1\",\"pages\":\"1742-1746\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
User Activity And Data Detection For MIMO Uplink C-RAN Using Bayesian Learning
We investigate user activity and data detection problem in a multiple-input multiple-output uplink cloud-radio access network, where the data matrix over a time-frame has overlapped burst sparsity due to sporadic user activity. We exploit this sparsity to recover data by proposing a weighted prior-sparse Bayesian learning algorithm. The proposed algorithm, due to carefully selected prior, captures not only the overlapped burst sparsity across time but also the block sparsity due to multi-user antennas. We also derive hyperparameter updates, and estimate the weight parameters using the support estimated via index-wise log-likelihood ratio test. We numerically demonstrate that the proposed algorithm has much lower bit error rate than the state-of-the-art competing algorithms.