两阶段抄袭检测指纹选择算法评价

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Applied Computer Systems Pub Date : 2021-12-01 DOI:10.2478/acss-2021-0022
Gints Jēkabsons
{"title":"两阶段抄袭检测指纹选择算法评价","authors":"Gints Jēkabsons","doi":"10.2478/acss-2021-0022","DOIUrl":null,"url":null,"abstract":"Abstract Generally, the process of plagiarism detection can be divided into two main stages: source retrieval and text alignment. The paper evaluates and compares effectiveness of five fingerprint selection algorithms used during the source retrieval stage: Every p-th, 0 mod p, Winnowing, Frequency-biased Winnowing (FBW) and Modified FBW (MFBW). The algorithms are evaluated on a dataset containing plagiarism cases in Bachelor and Master Theses written in English in the field of computer science. The best performance is reached by 0 mod p, Winnowing and MFBW. For these algorithms, reduction of fingerprint size from 100 % to about 20 % kept the effectiveness at approximately the same level. Moreover, MFBW sends overall fewer document pairs to the text alignment stage, thus also reducing the computational cost of the process. The software developed for this study is freely available at the author’s website http://www.cs.rtu.lv/jekabsons/.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"47 1","pages":"178 - 182"},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Fingerprint Selection Algorithms for Two-Stage Plagiarism Detection\",\"authors\":\"Gints Jēkabsons\",\"doi\":\"10.2478/acss-2021-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Generally, the process of plagiarism detection can be divided into two main stages: source retrieval and text alignment. The paper evaluates and compares effectiveness of five fingerprint selection algorithms used during the source retrieval stage: Every p-th, 0 mod p, Winnowing, Frequency-biased Winnowing (FBW) and Modified FBW (MFBW). The algorithms are evaluated on a dataset containing plagiarism cases in Bachelor and Master Theses written in English in the field of computer science. The best performance is reached by 0 mod p, Winnowing and MFBW. For these algorithms, reduction of fingerprint size from 100 % to about 20 % kept the effectiveness at approximately the same level. Moreover, MFBW sends overall fewer document pairs to the text alignment stage, thus also reducing the computational cost of the process. The software developed for this study is freely available at the author’s website http://www.cs.rtu.lv/jekabsons/.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"47 1\",\"pages\":\"178 - 182\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2021-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2021-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要一般来说,剽窃检测的过程可以分为两个主要阶段:来源检索和文本比对。本文评估和比较了源检索阶段使用的五种指纹选择算法的有效性:每p次、0模p、窗口化、频率偏置窗口化(FBW)和改进FBW (MFBW)。这些算法在包含计算机科学领域英语学士和硕士论文抄袭案例的数据集上进行了评估。0 mod p、Winnowing和MFBW达到最佳性能。对于这些算法,将指纹大小从100%减小到20%左右,使有效性保持在大致相同的水平。此外,MFBW向文本对齐阶段发送的文档对总体上更少,因此也降低了该过程的计算成本。为这项研究开发的软件可以在作者的网站http://www.cs.rtu.lv/jekabsons/上免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Fingerprint Selection Algorithms for Two-Stage Plagiarism Detection
Abstract Generally, the process of plagiarism detection can be divided into two main stages: source retrieval and text alignment. The paper evaluates and compares effectiveness of five fingerprint selection algorithms used during the source retrieval stage: Every p-th, 0 mod p, Winnowing, Frequency-biased Winnowing (FBW) and Modified FBW (MFBW). The algorithms are evaluated on a dataset containing plagiarism cases in Bachelor and Master Theses written in English in the field of computer science. The best performance is reached by 0 mod p, Winnowing and MFBW. For these algorithms, reduction of fingerprint size from 100 % to about 20 % kept the effectiveness at approximately the same level. Moreover, MFBW sends overall fewer document pairs to the text alignment stage, thus also reducing the computational cost of the process. The software developed for this study is freely available at the author’s website http://www.cs.rtu.lv/jekabsons/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
期刊最新文献
Multimodal Biometric System Based on the Fusion in Score of Fingerprint and Online Handwritten Signature Multichannel Approach for Sentiment Analysis Using Stack of Neural Network with Lexicon Based Padding and Attention Mechanism BRS-based Model for the Specification of Multi-view Point Ontology Empirical Analysis of Supervised and Unsupervised Machine Learning Algorithms with Aspect-Based Sentiment Analysis Approximate Nearest Neighbour-based Index Tree: A Case Study for Instrumental Music Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1