随时自动机

Joshua San Miguel, Natalie D. Enright Jerger
{"title":"随时自动机","authors":"Joshua San Miguel, Natalie D. Enright Jerger","doi":"10.1145/3007787.3001195","DOIUrl":null,"url":null,"abstract":"Approximate computing is an emerging paradigm enabling tradeoffs between accuracy and efficiency. However, a fundamental challenge persists: state-of-the-art techniques lack the ability to enforce runtime guarantees on accuracy. The convention is to 1) employ offline or online accuracy models, or 2) present experimental results that demonstrate empirically low error. Unfortunately, these approaches are still unable to guarantee acceptability of all application outputs at runtime. We offer a solution that revisits concepts from anytime algorithms. Originally explored for real-time decision problems, anytime algorithms have the property of producing results with increasing accuracy over time. We propose the Anytime Automaton, a new computation model that executes applications as a parallel pipeline of anytime approximations. An automaton produces approximate versions of the application output with increasing accuracy, guaranteeing that the final precise version is eventually reached. The automaton can be stopped whenever the output is deemed acceptable, otherwise, it is a simple matter of letting it run longer. We present an in-depth analysis of the model and demonstrate attractive runtime-accuracy profiles on various applications. Our anytime automaton is the first step towards systems where the acceptability of an application's output directly governs the amount of time and energy expended.","PeriodicalId":6634,"journal":{"name":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","volume":"782 1","pages":"545-557"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"The Anytime Automaton\",\"authors\":\"Joshua San Miguel, Natalie D. Enright Jerger\",\"doi\":\"10.1145/3007787.3001195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate computing is an emerging paradigm enabling tradeoffs between accuracy and efficiency. However, a fundamental challenge persists: state-of-the-art techniques lack the ability to enforce runtime guarantees on accuracy. The convention is to 1) employ offline or online accuracy models, or 2) present experimental results that demonstrate empirically low error. Unfortunately, these approaches are still unable to guarantee acceptability of all application outputs at runtime. We offer a solution that revisits concepts from anytime algorithms. Originally explored for real-time decision problems, anytime algorithms have the property of producing results with increasing accuracy over time. We propose the Anytime Automaton, a new computation model that executes applications as a parallel pipeline of anytime approximations. An automaton produces approximate versions of the application output with increasing accuracy, guaranteeing that the final precise version is eventually reached. The automaton can be stopped whenever the output is deemed acceptable, otherwise, it is a simple matter of letting it run longer. We present an in-depth analysis of the model and demonstrate attractive runtime-accuracy profiles on various applications. Our anytime automaton is the first step towards systems where the acceptability of an application's output directly governs the amount of time and energy expended.\",\"PeriodicalId\":6634,\"journal\":{\"name\":\"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)\",\"volume\":\"782 1\",\"pages\":\"545-557\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3007787.3001195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3007787.3001195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

近似计算是一种新兴的范式,能够在精度和效率之间进行权衡。然而,一个基本的挑战仍然存在:最先进的技术缺乏对准确性执行运行时保证的能力。惯例是1)采用离线或在线精度模型,或2)提供经验上证明低误差的实验结果。不幸的是,这些方法仍然不能保证运行时所有应用程序输出的可接受性。我们提供了一个解决方案,重新审视了任何时间算法的概念。anytime算法最初是为实时决策问题探索的,随着时间的推移,它产生的结果的准确性越来越高。我们提出了随时自动机,这是一种新的计算模型,它将应用程序作为随时逼近的并行管道来执行。自动机以越来越高的精度产生应用程序输出的近似版本,保证最终达到最终的精确版本。只要输出被认为是可接受的,就可以停止这个自动机,否则,让它运行更长时间就是一个简单的问题。我们对该模型进行了深入分析,并在各种应用程序上展示了具有吸引力的运行时精度概要。我们的任意时间自动化是迈向系统的第一步,其中应用程序输出的可接受性直接控制所花费的时间和精力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Anytime Automaton
Approximate computing is an emerging paradigm enabling tradeoffs between accuracy and efficiency. However, a fundamental challenge persists: state-of-the-art techniques lack the ability to enforce runtime guarantees on accuracy. The convention is to 1) employ offline or online accuracy models, or 2) present experimental results that demonstrate empirically low error. Unfortunately, these approaches are still unable to guarantee acceptability of all application outputs at runtime. We offer a solution that revisits concepts from anytime algorithms. Originally explored for real-time decision problems, anytime algorithms have the property of producing results with increasing accuracy over time. We propose the Anytime Automaton, a new computation model that executes applications as a parallel pipeline of anytime approximations. An automaton produces approximate versions of the application output with increasing accuracy, guaranteeing that the final precise version is eventually reached. The automaton can be stopped whenever the output is deemed acceptable, otherwise, it is a simple matter of letting it run longer. We present an in-depth analysis of the model and demonstrate attractive runtime-accuracy profiles on various applications. Our anytime automaton is the first step towards systems where the acceptability of an application's output directly governs the amount of time and energy expended.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RelaxFault Memory Repair Boosting Access Parallelism to PCM-Based Main Memory Bit-Plane Compression: Transforming Data for Better Compression in Many-Core Architectures Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems Energy Efficient Architecture for Graph Analytics Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1