Prashanth Amireddy, A. Garg, N. Kayal, Chandan Saha, Bhargav Thankey
{"title":"低深度算术电路下界通过移位偏","authors":"Prashanth Amireddy, A. Garg, N. Kayal, Chandan Saha, Bhargav Thankey","doi":"10.48550/arXiv.2211.07691","DOIUrl":null,"url":null,"abstract":"We prove super-polynomial lower bounds for low-depth arithmetic circuits using the shifted partials measure [Gupta-Kamath-Kayal-Saptharishi, CCC 2013], [Kayal, ECCC 2012] and the affine projections of partials measure [Garg-Kayal-Saha, FOCS 2020], [Kayal-Nair-Saha, STACS 2016]. The recent breakthrough work of Limaye, Srinivasan and Tavenas [FOCS 2021] proved these lower bounds by proving lower bounds for low-depth set-multilinear circuits. An interesting aspect of our proof is that it does not require conversion of a circuit to a set-multilinear circuit, nor does it involve a random restriction. We are able to upper bound the measures for homogeneous formulas directly, without going via set-multilinearity. Our lower bounds hold for the iterated matrix multiplication as well as the Nisan-Wigderson design polynomials. We also define a subclass of homogeneous formulas which we call unique parse tree (UPT) formulas, and prove superpolynomial lower bounds for these. This generalizes the superpolynomial lower bounds for regular formulas in [Kayal-Saha-Saptharishi, STOC 2014], [Fournier-Limaye-Malod-Srinivasan, STOC 2014].","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"147 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-depth arithmetic circuit lower bounds via shifted partials\",\"authors\":\"Prashanth Amireddy, A. Garg, N. Kayal, Chandan Saha, Bhargav Thankey\",\"doi\":\"10.48550/arXiv.2211.07691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove super-polynomial lower bounds for low-depth arithmetic circuits using the shifted partials measure [Gupta-Kamath-Kayal-Saptharishi, CCC 2013], [Kayal, ECCC 2012] and the affine projections of partials measure [Garg-Kayal-Saha, FOCS 2020], [Kayal-Nair-Saha, STACS 2016]. The recent breakthrough work of Limaye, Srinivasan and Tavenas [FOCS 2021] proved these lower bounds by proving lower bounds for low-depth set-multilinear circuits. An interesting aspect of our proof is that it does not require conversion of a circuit to a set-multilinear circuit, nor does it involve a random restriction. We are able to upper bound the measures for homogeneous formulas directly, without going via set-multilinearity. Our lower bounds hold for the iterated matrix multiplication as well as the Nisan-Wigderson design polynomials. We also define a subclass of homogeneous formulas which we call unique parse tree (UPT) formulas, and prove superpolynomial lower bounds for these. This generalizes the superpolynomial lower bounds for regular formulas in [Kayal-Saha-Saptharishi, STOC 2014], [Fournier-Limaye-Malod-Srinivasan, STOC 2014].\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"147 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.07691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.07691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-depth arithmetic circuit lower bounds via shifted partials
We prove super-polynomial lower bounds for low-depth arithmetic circuits using the shifted partials measure [Gupta-Kamath-Kayal-Saptharishi, CCC 2013], [Kayal, ECCC 2012] and the affine projections of partials measure [Garg-Kayal-Saha, FOCS 2020], [Kayal-Nair-Saha, STACS 2016]. The recent breakthrough work of Limaye, Srinivasan and Tavenas [FOCS 2021] proved these lower bounds by proving lower bounds for low-depth set-multilinear circuits. An interesting aspect of our proof is that it does not require conversion of a circuit to a set-multilinear circuit, nor does it involve a random restriction. We are able to upper bound the measures for homogeneous formulas directly, without going via set-multilinearity. Our lower bounds hold for the iterated matrix multiplication as well as the Nisan-Wigderson design polynomials. We also define a subclass of homogeneous formulas which we call unique parse tree (UPT) formulas, and prove superpolynomial lower bounds for these. This generalizes the superpolynomial lower bounds for regular formulas in [Kayal-Saha-Saptharishi, STOC 2014], [Fournier-Limaye-Malod-Srinivasan, STOC 2014].