基于雾的物联网隐私保护研究

Kinza Sarwar, Sira Yongchareon, Jian Yu, S. Rehman
{"title":"基于雾的物联网隐私保护研究","authors":"Kinza Sarwar, Sira Yongchareon, Jian Yu, S. Rehman","doi":"10.1145/3474554","DOIUrl":null,"url":null,"abstract":"Despite the rapid growth and advancement in the Internet of Things (IoT), there are critical challenges that need to be addressed before the full adoption of the IoT. Data privacy is one of the hurdles towards the adoption of IoT as there might be potential misuse of users’ data and their identity in IoT applications. Several researchers have proposed different approaches to reduce privacy risks. However, most of the existing solutions still suffer from various drawbacks, such as huge bandwidth utilization and network latency, heavyweight cryptosystems, and policies that are applied on sensor devices and in the cloud. To address these issues, fog computing has been introduced for IoT network edges providing low latency, computation, and storage services. In this survey, we comprehensively review and classify privacy requirements for an in-depth understanding of privacy implications in IoT applications. Based on the classification, we highlight ongoing research efforts and limitations of the existing privacy-preservation techniques and map the existing IoT schemes with Fog-enabled IoT schemes to elaborate on the benefits and improvements that Fog-enabled IoT can bring to preserve data privacy in IoT applications. Lastly, we enumerate key research challenges and point out future research directions.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"151 1","pages":"1 - 39"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Survey on Privacy Preservation in Fog-Enabled Internet of Things\",\"authors\":\"Kinza Sarwar, Sira Yongchareon, Jian Yu, S. Rehman\",\"doi\":\"10.1145/3474554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the rapid growth and advancement in the Internet of Things (IoT), there are critical challenges that need to be addressed before the full adoption of the IoT. Data privacy is one of the hurdles towards the adoption of IoT as there might be potential misuse of users’ data and their identity in IoT applications. Several researchers have proposed different approaches to reduce privacy risks. However, most of the existing solutions still suffer from various drawbacks, such as huge bandwidth utilization and network latency, heavyweight cryptosystems, and policies that are applied on sensor devices and in the cloud. To address these issues, fog computing has been introduced for IoT network edges providing low latency, computation, and storage services. In this survey, we comprehensively review and classify privacy requirements for an in-depth understanding of privacy implications in IoT applications. Based on the classification, we highlight ongoing research efforts and limitations of the existing privacy-preservation techniques and map the existing IoT schemes with Fog-enabled IoT schemes to elaborate on the benefits and improvements that Fog-enabled IoT can bring to preserve data privacy in IoT applications. Lastly, we enumerate key research challenges and point out future research directions.\",\"PeriodicalId\":7000,\"journal\":{\"name\":\"ACM Computing Surveys (CSUR)\",\"volume\":\"151 1\",\"pages\":\"1 - 39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys (CSUR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys (CSUR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

尽管物联网(IoT)发展迅速,但在全面采用物联网之前,仍有一些关键挑战需要解决。数据隐私是采用物联网的障碍之一,因为在物联网应用中可能存在滥用用户数据及其身份的潜在问题。几位研究人员提出了不同的方法来降低隐私风险。然而,大多数现有解决方案仍然存在各种缺点,例如巨大的带宽利用率和网络延迟、重量级密码系统以及应用于传感器设备和云中的策略。为了解决这些问题,在物联网网络边缘引入了雾计算,提供低延迟、计算和存储服务。在本调查中,我们全面审查和分类隐私需求,以深入了解物联网应用中的隐私影响。基于分类,我们强调了正在进行的研究工作和现有隐私保护技术的局限性,并将现有的物联网方案与支持fog的物联网方案进行了映射,以详细说明支持fog的物联网可以为保护物联网应用中的数据隐私带来的好处和改进。最后,我们列举了关键的研究挑战,并指出了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Survey on Privacy Preservation in Fog-Enabled Internet of Things
Despite the rapid growth and advancement in the Internet of Things (IoT), there are critical challenges that need to be addressed before the full adoption of the IoT. Data privacy is one of the hurdles towards the adoption of IoT as there might be potential misuse of users’ data and their identity in IoT applications. Several researchers have proposed different approaches to reduce privacy risks. However, most of the existing solutions still suffer from various drawbacks, such as huge bandwidth utilization and network latency, heavyweight cryptosystems, and policies that are applied on sensor devices and in the cloud. To address these issues, fog computing has been introduced for IoT network edges providing low latency, computation, and storage services. In this survey, we comprehensively review and classify privacy requirements for an in-depth understanding of privacy implications in IoT applications. Based on the classification, we highlight ongoing research efforts and limitations of the existing privacy-preservation techniques and map the existing IoT schemes with Fog-enabled IoT schemes to elaborate on the benefits and improvements that Fog-enabled IoT can bring to preserve data privacy in IoT applications. Lastly, we enumerate key research challenges and point out future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Comparisons of Clustering Approaches for Data Representation On the Structure of the Boolean Satisfiability Problem: A Survey A Brief Overview of Universal Sentence Representation Methods: A Linguistic View The Eye in Extended Reality: A Survey on Gaze Interaction and Eye Tracking in Head-worn Extended Reality A Comprehensive Report on Machine Learning-based Early Detection of Alzheimer's Disease using Multi-modal Neuroimaging Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1