多租户环境中键值存储的性能干扰:当块大小和写请求重要时

Adriano Lange, T. R. Kepe, M. Sunyé
{"title":"多租户环境中键值存储的性能干扰:当块大小和写请求重要时","authors":"Adriano Lange, T. R. Kepe, M. Sunyé","doi":"10.1145/3447545.3451191","DOIUrl":null,"url":null,"abstract":"Key-value stores are currently used by major cloud computing vendors, such as Google, Facebook, and LinkedIn, to support large-scale applications with concurrent read and write operations. Based on very simple data access APIs, the key-value stores can deliver outstanding throughput, which have been hooked up to high-performance solid-state drives (SSDs) to boost this performance even further. However, measuring performance interference on SSDs while sharing cloud computing resources is complex and not well covered by current benchmarks and tools. Different applications can access these resources concurrently until becoming overloaded without notice either by the benchmark or the cloud application. In this paper, we define a methodology to measure the problem of performance interference. Depending on the block size and the proportion of concurrent write operations, we show how a key-value store may quickly degrade throughput until becoming almost inoperative while sharing persistent storage resources with other tenants.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"192 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Interference on Key-Value Stores in Multi-tenant Environments: When Block Size and Write Requests Matter\",\"authors\":\"Adriano Lange, T. R. Kepe, M. Sunyé\",\"doi\":\"10.1145/3447545.3451191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Key-value stores are currently used by major cloud computing vendors, such as Google, Facebook, and LinkedIn, to support large-scale applications with concurrent read and write operations. Based on very simple data access APIs, the key-value stores can deliver outstanding throughput, which have been hooked up to high-performance solid-state drives (SSDs) to boost this performance even further. However, measuring performance interference on SSDs while sharing cloud computing resources is complex and not well covered by current benchmarks and tools. Different applications can access these resources concurrently until becoming overloaded without notice either by the benchmark or the cloud application. In this paper, we define a methodology to measure the problem of performance interference. Depending on the block size and the proportion of concurrent write operations, we show how a key-value store may quickly degrade throughput until becoming almost inoperative while sharing persistent storage resources with other tenants.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"192 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447545.3451191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447545.3451191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

键值存储目前被主要的云计算供应商(如Google、Facebook和LinkedIn)用于支持具有并发读写操作的大规模应用程序。基于非常简单的数据访问api,键值存储可以提供出色的吞吐量,这些吞吐量已连接到高性能固态驱动器(ssd)以进一步提高性能。然而,在共享云计算资源的同时测量ssd的性能干扰是复杂的,目前的基准和工具没有很好地涵盖。不同的应用程序可以并发地访问这些资源,直到基准测试或云应用程序不通知就过载为止。本文定义了一种测量性能干扰问题的方法。根据块大小和并发写操作的比例,我们将展示键值存储如何在与其他租户共享持久存储资源时迅速降低吞吐量,直到几乎无法运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Interference on Key-Value Stores in Multi-tenant Environments: When Block Size and Write Requests Matter
Key-value stores are currently used by major cloud computing vendors, such as Google, Facebook, and LinkedIn, to support large-scale applications with concurrent read and write operations. Based on very simple data access APIs, the key-value stores can deliver outstanding throughput, which have been hooked up to high-performance solid-state drives (SSDs) to boost this performance even further. However, measuring performance interference on SSDs while sharing cloud computing resources is complex and not well covered by current benchmarks and tools. Different applications can access these resources concurrently until becoming overloaded without notice either by the benchmark or the cloud application. In this paper, we define a methodology to measure the problem of performance interference. Depending on the block size and the proportion of concurrent write operations, we show how a key-value store may quickly degrade throughput until becoming almost inoperative while sharing persistent storage resources with other tenants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sampling-based Label Propagation for Balanced Graph Partitioning ICPE '22: ACM/SPEC International Conference on Performance Engineering, Bejing, China, April 9 - 13, 2022 The Role of Analytical Models in the Engineering and Science of Computer Systems Enhancing Observability of Serverless Computing with the Serverless Application Analytics Framework Towards Elastic and Sustainable Data Stream Processing on Edge Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1