J. L. Risco-Martín, Segundo Esteban, Jesús Chacón, Gonzalo Carazo-Barbero, E. Besada-Portas, J. A. López-Orozco
{"title":"模拟驱动工程有害藻类和蓝藻华的管理","authors":"J. L. Risco-Martín, Segundo Esteban, Jesús Chacón, Gonzalo Carazo-Barbero, E. Besada-Portas, J. A. López-Orozco","doi":"10.1177/00375497231184246","DOIUrl":null,"url":null,"abstract":"Harmful algal and cyanobacterial blooms (HABs), occurring in inland and maritime waters, pose threats to natural environments by producing toxins that affect human and animal health. In the past, HABs have been assessed mainly by the manual collection and subsequent analysis of water samples and occasionally by automatic instruments that acquire information from fixed locations. These procedures do not provide data with the desirable spatial and temporal resolution to anticipate the formation of HABs. Hence, new tools and technologies are needed to efficiently detect, characterize and respond to HABs that threaten water quality. It is essential nowadays when the world’s water supply is under tremendous pressure because of climate change, overexploitation, and pollution. This paper introduces Discrete Event System Specification-BLOOM, a novel framework for real-time monitoring and management of HABs. Its purpose is to support high-performance hazard detection with model-based system engineering and cyber-physical systems infrastructure for dynamic environments.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation-driven engineering for the management of harmful algal and cyanobacterial blooms\",\"authors\":\"J. L. Risco-Martín, Segundo Esteban, Jesús Chacón, Gonzalo Carazo-Barbero, E. Besada-Portas, J. A. López-Orozco\",\"doi\":\"10.1177/00375497231184246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harmful algal and cyanobacterial blooms (HABs), occurring in inland and maritime waters, pose threats to natural environments by producing toxins that affect human and animal health. In the past, HABs have been assessed mainly by the manual collection and subsequent analysis of water samples and occasionally by automatic instruments that acquire information from fixed locations. These procedures do not provide data with the desirable spatial and temporal resolution to anticipate the formation of HABs. Hence, new tools and technologies are needed to efficiently detect, characterize and respond to HABs that threaten water quality. It is essential nowadays when the world’s water supply is under tremendous pressure because of climate change, overexploitation, and pollution. This paper introduces Discrete Event System Specification-BLOOM, a novel framework for real-time monitoring and management of HABs. Its purpose is to support high-performance hazard detection with model-based system engineering and cyber-physical systems infrastructure for dynamic environments.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/00375497231184246\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/00375497231184246","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Simulation-driven engineering for the management of harmful algal and cyanobacterial blooms
Harmful algal and cyanobacterial blooms (HABs), occurring in inland and maritime waters, pose threats to natural environments by producing toxins that affect human and animal health. In the past, HABs have been assessed mainly by the manual collection and subsequent analysis of water samples and occasionally by automatic instruments that acquire information from fixed locations. These procedures do not provide data with the desirable spatial and temporal resolution to anticipate the formation of HABs. Hence, new tools and technologies are needed to efficiently detect, characterize and respond to HABs that threaten water quality. It is essential nowadays when the world’s water supply is under tremendous pressure because of climate change, overexploitation, and pollution. This paper introduces Discrete Event System Specification-BLOOM, a novel framework for real-time monitoring and management of HABs. Its purpose is to support high-performance hazard detection with model-based system engineering and cyber-physical systems infrastructure for dynamic environments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.