{"title":"一种基于连接时间分类的卷积神经网络手写体数字识别预测率和准确率分析方法","authors":"M. PranathiSaiPrathyusha, Dr. K. Malathi","doi":"10.47750/CIBG.2021.27.04.019","DOIUrl":null,"url":null,"abstract":"Aim: Recognizing the Handwritten Digits to find the best accuracy using Machine learning methods such as Connectionist Temporal Classification (CTC) and Convolutional Neural Network (CNN). Methods and Materials: Accuracy and loss are performed with the MNIST dataset from the Keras library. The two groups Connectionist Temporal classification (N=20) and Convolutional Neural Network algorithms (N=20). Results: A CNN is used for recognizing the innovative handwritten digits. The accuracy is analysed based on correctness of the exact digits of 92.67% where the CTC has the accuracy of 89.07%. The two algorithms CNN and CTC are statistically satisfied with the independent sample T-Test (=.001) value (p<0.05) with confidence level of 95%. Conclusion: Recognizing the handwritten digits significantly seems to be better in CNN than CTC.","PeriodicalId":42396,"journal":{"name":"Alinteri Journal of Agriculture Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Innovative Method to Analyse the Prediction Rate and Accuracy for Handwritten Digit Recognition with Convolutional Neural Network Over Connection Temporal Classification\",\"authors\":\"M. PranathiSaiPrathyusha, Dr. K. Malathi\",\"doi\":\"10.47750/CIBG.2021.27.04.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: Recognizing the Handwritten Digits to find the best accuracy using Machine learning methods such as Connectionist Temporal Classification (CTC) and Convolutional Neural Network (CNN). Methods and Materials: Accuracy and loss are performed with the MNIST dataset from the Keras library. The two groups Connectionist Temporal classification (N=20) and Convolutional Neural Network algorithms (N=20). Results: A CNN is used for recognizing the innovative handwritten digits. The accuracy is analysed based on correctness of the exact digits of 92.67% where the CTC has the accuracy of 89.07%. The two algorithms CNN and CTC are statistically satisfied with the independent sample T-Test (=.001) value (p<0.05) with confidence level of 95%. Conclusion: Recognizing the handwritten digits significantly seems to be better in CNN than CTC.\",\"PeriodicalId\":42396,\"journal\":{\"name\":\"Alinteri Journal of Agriculture Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alinteri Journal of Agriculture Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47750/CIBG.2021.27.04.019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alinteri Journal of Agriculture Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47750/CIBG.2021.27.04.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Innovative Method to Analyse the Prediction Rate and Accuracy for Handwritten Digit Recognition with Convolutional Neural Network Over Connection Temporal Classification
Aim: Recognizing the Handwritten Digits to find the best accuracy using Machine learning methods such as Connectionist Temporal Classification (CTC) and Convolutional Neural Network (CNN). Methods and Materials: Accuracy and loss are performed with the MNIST dataset from the Keras library. The two groups Connectionist Temporal classification (N=20) and Convolutional Neural Network algorithms (N=20). Results: A CNN is used for recognizing the innovative handwritten digits. The accuracy is analysed based on correctness of the exact digits of 92.67% where the CTC has the accuracy of 89.07%. The two algorithms CNN and CTC are statistically satisfied with the independent sample T-Test (=.001) value (p<0.05) with confidence level of 95%. Conclusion: Recognizing the handwritten digits significantly seems to be better in CNN than CTC.