{"title":"人小窝蛋白-1:前列腺癌治疗的有效抑制剂:计算方法","authors":"Uzma Khanam, B. K. Malik, P. Mathur, B. Rathi","doi":"10.20944/PREPRINTS201610.0016.V1","DOIUrl":null,"url":null,"abstract":"Caveolin-1 (Cav-1) is 22 kDa caveolae protein, acts as a scaffold within caveolar membranes, interacts with Gα-protein and thereby regulates their activity. Earlier studies reported elevated caveolin-1 levels in the serum of prostate cancer patients. Secreted Cav-1 promotes angiogenesis, cell proliferation and anti-apoptotic activities in prostate cancer patients. This study was designed to explore Cav-1 as a target for prostate cancer therapy using computational approach. Molecular docking, structural base molecular modelling and molecular dynamics simulations were performed to investigate Cav-1 inhibitors. A predictive model was used for virtual screening against ZINC database of biogenic compounds. Stability of the active site residues of Cav-1 was estimated by IFD and 100 ns long molecular dynamic simulations. The reported compounds showed significant binding and thus can be considered potent therapeutic inhibitors of Cav-1. Thus, further investigative studies on the biochemical interactions of Cav-1 would provide a valuable insight into its probable therapeutic applications.","PeriodicalId":13612,"journal":{"name":"Int. J. Comput. Biol. Drug Des.","volume":"1 1","pages":"203-218"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human caveolin-1 a potent inhibitor for prostate cancer therapy: a computational approach\",\"authors\":\"Uzma Khanam, B. K. Malik, P. Mathur, B. Rathi\",\"doi\":\"10.20944/PREPRINTS201610.0016.V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Caveolin-1 (Cav-1) is 22 kDa caveolae protein, acts as a scaffold within caveolar membranes, interacts with Gα-protein and thereby regulates their activity. Earlier studies reported elevated caveolin-1 levels in the serum of prostate cancer patients. Secreted Cav-1 promotes angiogenesis, cell proliferation and anti-apoptotic activities in prostate cancer patients. This study was designed to explore Cav-1 as a target for prostate cancer therapy using computational approach. Molecular docking, structural base molecular modelling and molecular dynamics simulations were performed to investigate Cav-1 inhibitors. A predictive model was used for virtual screening against ZINC database of biogenic compounds. Stability of the active site residues of Cav-1 was estimated by IFD and 100 ns long molecular dynamic simulations. The reported compounds showed significant binding and thus can be considered potent therapeutic inhibitors of Cav-1. Thus, further investigative studies on the biochemical interactions of Cav-1 would provide a valuable insight into its probable therapeutic applications.\",\"PeriodicalId\":13612,\"journal\":{\"name\":\"Int. J. Comput. Biol. Drug Des.\",\"volume\":\"1 1\",\"pages\":\"203-218\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Biol. Drug Des.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20944/PREPRINTS201610.0016.V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Biol. Drug Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/PREPRINTS201610.0016.V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human caveolin-1 a potent inhibitor for prostate cancer therapy: a computational approach
Caveolin-1 (Cav-1) is 22 kDa caveolae protein, acts as a scaffold within caveolar membranes, interacts with Gα-protein and thereby regulates their activity. Earlier studies reported elevated caveolin-1 levels in the serum of prostate cancer patients. Secreted Cav-1 promotes angiogenesis, cell proliferation and anti-apoptotic activities in prostate cancer patients. This study was designed to explore Cav-1 as a target for prostate cancer therapy using computational approach. Molecular docking, structural base molecular modelling and molecular dynamics simulations were performed to investigate Cav-1 inhibitors. A predictive model was used for virtual screening against ZINC database of biogenic compounds. Stability of the active site residues of Cav-1 was estimated by IFD and 100 ns long molecular dynamic simulations. The reported compounds showed significant binding and thus can be considered potent therapeutic inhibitors of Cav-1. Thus, further investigative studies on the biochemical interactions of Cav-1 would provide a valuable insight into its probable therapeutic applications.