扑翼动力学作为风向的自然探测器

Kazutoshi Tanaka, Shihao Yang, Yuji Tokudome, Yuna Minami, Yuyao Lu, T. Arie, S. Akita, K. Takei, K. Nakajima
{"title":"扑翼动力学作为风向的自然探测器","authors":"Kazutoshi Tanaka, Shihao Yang, Yuji Tokudome, Yuna Minami, Yuyao Lu, T. Arie, S. Akita, K. Takei, K. Nakajima","doi":"10.1002/aisy.202000174","DOIUrl":null,"url":null,"abstract":"Flapping‐wing unmanned aerial vehicles have potential advantages, such as consuming lower energy by leveraging the force of wind. Since the flapping movements of the soft wings contain information about the wind, measuring the movement of each part of the wings allows these vehicles to distinguish the direction of the wind. To confirm this prediction, herein, the detection of wind flow from the flapping‐wing motion of a bird robot using an integrated flexible strain sensor on its wing and a physical reservoir computing analysis is presented. In the presence of different wind directions, the movement of the flapping‐wings is measured using flexible strain sensors, and the current wind direction is detected by capitalizing on the intrinsic wing dynamics. As a result, it is found that the detection accuracy using our embedded flexible strain sensors is significantly high, showing a similar level of accuracy with a high‐speed camera recorded from the fixed position in the environment. The results indicate that flapping‐wing unmanned aerial vehicles can recognize wind direction by exploiting the natural dynamics of their wings.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Flapping‐Wing Dynamics as a Natural Detector of Wind Direction\",\"authors\":\"Kazutoshi Tanaka, Shihao Yang, Yuji Tokudome, Yuna Minami, Yuyao Lu, T. Arie, S. Akita, K. Takei, K. Nakajima\",\"doi\":\"10.1002/aisy.202000174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flapping‐wing unmanned aerial vehicles have potential advantages, such as consuming lower energy by leveraging the force of wind. Since the flapping movements of the soft wings contain information about the wind, measuring the movement of each part of the wings allows these vehicles to distinguish the direction of the wind. To confirm this prediction, herein, the detection of wind flow from the flapping‐wing motion of a bird robot using an integrated flexible strain sensor on its wing and a physical reservoir computing analysis is presented. In the presence of different wind directions, the movement of the flapping‐wings is measured using flexible strain sensors, and the current wind direction is detected by capitalizing on the intrinsic wing dynamics. As a result, it is found that the detection accuracy using our embedded flexible strain sensors is significantly high, showing a similar level of accuracy with a high‐speed camera recorded from the fixed position in the environment. The results indicate that flapping‐wing unmanned aerial vehicles can recognize wind direction by exploiting the natural dynamics of their wings.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202000174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

扑翼无人机具有潜在的优势,例如通过利用风力消耗更低的能量。由于软翼的拍打运动包含了风的信息,因此测量机翼各部分的运动可以让这些飞行器区分风的方向。为了证实这一预测,本文提出了利用机翼上的集成柔性应变传感器和物理储层计算分析来检测鸟类机器人扑翼运动中的气流。在不同风向下,扑翼的运动是用柔性应变传感器测量的,当前风向是利用机翼的固有动力学来检测的。结果发现,使用我们的嵌入式柔性应变传感器的检测精度非常高,显示出与高速摄像机从环境中的固定位置记录的精度相似的水平。结果表明,扑翼无人机可以利用机翼的自然动力学特性来识别风向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flapping‐Wing Dynamics as a Natural Detector of Wind Direction
Flapping‐wing unmanned aerial vehicles have potential advantages, such as consuming lower energy by leveraging the force of wind. Since the flapping movements of the soft wings contain information about the wind, measuring the movement of each part of the wings allows these vehicles to distinguish the direction of the wind. To confirm this prediction, herein, the detection of wind flow from the flapping‐wing motion of a bird robot using an integrated flexible strain sensor on its wing and a physical reservoir computing analysis is presented. In the presence of different wind directions, the movement of the flapping‐wings is measured using flexible strain sensors, and the current wind direction is detected by capitalizing on the intrinsic wing dynamics. As a result, it is found that the detection accuracy using our embedded flexible strain sensors is significantly high, showing a similar level of accuracy with a high‐speed camera recorded from the fixed position in the environment. The results indicate that flapping‐wing unmanned aerial vehicles can recognize wind direction by exploiting the natural dynamics of their wings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1