有限标签高光谱图像光谱空间深度学习避免过拟合

M. Molinier, J. Kilpi
{"title":"有限标签高光谱图像光谱空间深度学习避免过拟合","authors":"M. Molinier, J. Kilpi","doi":"10.1109/IGARSS.2019.8900328","DOIUrl":null,"url":null,"abstract":"Spatial-spectral approaches applied on hyperspectral images (HSI) with limited labels suffer from overfitting when the size of input filters and the percentage of training data increases. In those cases, pixel values corresponding to testing sets are partly or completely seen during training phase, reducing the number independent testing pixels and leading to overoptimistic accuracy assessment. These effects have been demonstrated in several previous works but still require attention. In this work we propose additional visulizations and measures of the overlapping and overfitting effects, demonstrated on common HSI datasets, to increase awareness on these issues.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"125 1","pages":"5049-5052"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Avoiding Overfitting When Applying Spectral-Spatial Deep Learning Methods on Hyperspectral Images with Limited Labels\",\"authors\":\"M. Molinier, J. Kilpi\",\"doi\":\"10.1109/IGARSS.2019.8900328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial-spectral approaches applied on hyperspectral images (HSI) with limited labels suffer from overfitting when the size of input filters and the percentage of training data increases. In those cases, pixel values corresponding to testing sets are partly or completely seen during training phase, reducing the number independent testing pixels and leading to overoptimistic accuracy assessment. These effects have been demonstrated in several previous works but still require attention. In this work we propose additional visulizations and measures of the overlapping and overfitting effects, demonstrated on common HSI datasets, to increase awareness on these issues.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"125 1\",\"pages\":\"5049-5052\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8900328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8900328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

当输入滤波器的大小和训练数据的百分比增加时,应用于标签有限的高光谱图像(HSI)的空间光谱方法会出现过拟合的问题。在这种情况下,与测试集对应的像素值在训练阶段被部分或完全看到,减少了独立测试像素的数量,导致准确性评估过于乐观。这些影响已经在以前的几项研究中得到证实,但仍然需要注意。在这项工作中,我们提出了额外的重叠和过拟合效应的可视化和测量方法,在常见的HSI数据集上进行了演示,以提高对这些问题的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Avoiding Overfitting When Applying Spectral-Spatial Deep Learning Methods on Hyperspectral Images with Limited Labels
Spatial-spectral approaches applied on hyperspectral images (HSI) with limited labels suffer from overfitting when the size of input filters and the percentage of training data increases. In those cases, pixel values corresponding to testing sets are partly or completely seen during training phase, reducing the number independent testing pixels and leading to overoptimistic accuracy assessment. These effects have been demonstrated in several previous works but still require attention. In this work we propose additional visulizations and measures of the overlapping and overfitting effects, demonstrated on common HSI datasets, to increase awareness on these issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1