Min Han, Jun Wu, A. Bashir, Wu Yang, Muhammad Imran, N. Nasser
{"title":"基于对抗性学习的公平智能车疲劳驾驶检测偏差缓解","authors":"Min Han, Jun Wu, A. Bashir, Wu Yang, Muhammad Imran, N. Nasser","doi":"10.1109/GLOBECOM42002.2020.9322194","DOIUrl":null,"url":null,"abstract":"Fatigue driving is one of main causes of traffic accidents. To avoid such traffic accidents, divers’ fatigue detection has been used in Intelligent Internet of Vehicles (IIoV). IIoV usually dynamically allocate computing resources according to drivers’ fatigue degree to improve the real-time of fatigue detection model. However, the traditional fatigue detection model may have bias on certain groups, which would further cause unfair resource allocation. To solve the problem, this paper proposes an improved IIoV framework, named Fair-Intelligent Internet of Vehicles (FIIoV). Compared with IIoV, we improve two layers in FIIoV, i.e., the detection layer and the normalization layer. The detection layer uses Convolutional Neural Network (CNN) to detect drivers’ fatigue degree, and then uses adversarial network to achieve fairness of detection models. The normalization layer achieves the distribution of different sensitive feature values from historical detection results generated in the detection layer, and then uses the distribution to normalize the output of the detection layer to improve the fairness and accuracy of fatigue detection models. Simulation results show that both accuracy and fairness of FIIoV is improved compared with the original IIoV.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"146 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adversarial Learning-based Bias Mitigation for Fatigue Driving Detection in Fair-Intelligent IoV\",\"authors\":\"Min Han, Jun Wu, A. Bashir, Wu Yang, Muhammad Imran, N. Nasser\",\"doi\":\"10.1109/GLOBECOM42002.2020.9322194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fatigue driving is one of main causes of traffic accidents. To avoid such traffic accidents, divers’ fatigue detection has been used in Intelligent Internet of Vehicles (IIoV). IIoV usually dynamically allocate computing resources according to drivers’ fatigue degree to improve the real-time of fatigue detection model. However, the traditional fatigue detection model may have bias on certain groups, which would further cause unfair resource allocation. To solve the problem, this paper proposes an improved IIoV framework, named Fair-Intelligent Internet of Vehicles (FIIoV). Compared with IIoV, we improve two layers in FIIoV, i.e., the detection layer and the normalization layer. The detection layer uses Convolutional Neural Network (CNN) to detect drivers’ fatigue degree, and then uses adversarial network to achieve fairness of detection models. The normalization layer achieves the distribution of different sensitive feature values from historical detection results generated in the detection layer, and then uses the distribution to normalize the output of the detection layer to improve the fairness and accuracy of fatigue detection models. Simulation results show that both accuracy and fairness of FIIoV is improved compared with the original IIoV.\",\"PeriodicalId\":12759,\"journal\":{\"name\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"volume\":\"146 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM42002.2020.9322194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adversarial Learning-based Bias Mitigation for Fatigue Driving Detection in Fair-Intelligent IoV
Fatigue driving is one of main causes of traffic accidents. To avoid such traffic accidents, divers’ fatigue detection has been used in Intelligent Internet of Vehicles (IIoV). IIoV usually dynamically allocate computing resources according to drivers’ fatigue degree to improve the real-time of fatigue detection model. However, the traditional fatigue detection model may have bias on certain groups, which would further cause unfair resource allocation. To solve the problem, this paper proposes an improved IIoV framework, named Fair-Intelligent Internet of Vehicles (FIIoV). Compared with IIoV, we improve two layers in FIIoV, i.e., the detection layer and the normalization layer. The detection layer uses Convolutional Neural Network (CNN) to detect drivers’ fatigue degree, and then uses adversarial network to achieve fairness of detection models. The normalization layer achieves the distribution of different sensitive feature values from historical detection results generated in the detection layer, and then uses the distribution to normalize the output of the detection layer to improve the fairness and accuracy of fatigue detection models. Simulation results show that both accuracy and fairness of FIIoV is improved compared with the original IIoV.