{"title":"幻影边界壳的分析及由此产生的壳对SAR值的匹配效应","authors":"Daniel Brooks, S. Nicol, Jacek Wojcik","doi":"10.1109/ISEMC.2005.1513476","DOIUrl":null,"url":null,"abstract":"Finite difference time domain (FDTD) methods were employed to develop the complete mechanical structure (complex) of the half-wavelength experimental dipole models used to conduct this research. This paper examines how the phantom shell dielectric boundary affects the specific absorption rate (SAR) for simulations based on experimental system validation measurement protocols and the resultant calculations. Numerical calculations are made to determine complex electric and magnetic field magnitudes along with the SAR values within the APREL Laboratories universal phantom filled with tissue simulation fluid. Secondary calculations are made without the universal phantom shell (elimination of phantom shell boundary) being in place and compared against the prime phantom model data","PeriodicalId":6459,"journal":{"name":"2005 International Symposium on Electromagnetic Compatibility, 2005. EMC 2005.","volume":"1 1","pages":"79-83"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of phantom boundary shell and the resultant matching effect of shell on SAR (specific absorption rate) values\",\"authors\":\"Daniel Brooks, S. Nicol, Jacek Wojcik\",\"doi\":\"10.1109/ISEMC.2005.1513476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite difference time domain (FDTD) methods were employed to develop the complete mechanical structure (complex) of the half-wavelength experimental dipole models used to conduct this research. This paper examines how the phantom shell dielectric boundary affects the specific absorption rate (SAR) for simulations based on experimental system validation measurement protocols and the resultant calculations. Numerical calculations are made to determine complex electric and magnetic field magnitudes along with the SAR values within the APREL Laboratories universal phantom filled with tissue simulation fluid. Secondary calculations are made without the universal phantom shell (elimination of phantom shell boundary) being in place and compared against the prime phantom model data\",\"PeriodicalId\":6459,\"journal\":{\"name\":\"2005 International Symposium on Electromagnetic Compatibility, 2005. EMC 2005.\",\"volume\":\"1 1\",\"pages\":\"79-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Symposium on Electromagnetic Compatibility, 2005. EMC 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.2005.1513476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Electromagnetic Compatibility, 2005. EMC 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2005.1513476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of phantom boundary shell and the resultant matching effect of shell on SAR (specific absorption rate) values
Finite difference time domain (FDTD) methods were employed to develop the complete mechanical structure (complex) of the half-wavelength experimental dipole models used to conduct this research. This paper examines how the phantom shell dielectric boundary affects the specific absorption rate (SAR) for simulations based on experimental system validation measurement protocols and the resultant calculations. Numerical calculations are made to determine complex electric and magnetic field magnitudes along with the SAR values within the APREL Laboratories universal phantom filled with tissue simulation fluid. Secondary calculations are made without the universal phantom shell (elimination of phantom shell boundary) being in place and compared against the prime phantom model data