Nagaarchana Godavarthy, Yuan Wang, Travis Ebesu, Un Suthee, Min Xie, Yi Fang
{"title":"通过个性化的记忆传输,通过在线对话学习用户偏好","authors":"Nagaarchana Godavarthy, Yuan Wang, Travis Ebesu, Un Suthee, Min Xie, Yi Fang","doi":"10.1007/s10791-022-09410-1","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":54352,"journal":{"name":"Information Retrieval Journal","volume":"125 1","pages":"306 - 328"},"PeriodicalIF":1.7000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning user preferences through online conversations via personalized memory transfer\",\"authors\":\"Nagaarchana Godavarthy, Yuan Wang, Travis Ebesu, Un Suthee, Min Xie, Yi Fang\",\"doi\":\"10.1007/s10791-022-09410-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":54352,\"journal\":{\"name\":\"Information Retrieval Journal\",\"volume\":\"125 1\",\"pages\":\"306 - 328\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Retrieval Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10791-022-09410-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Retrieval Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10791-022-09410-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
期刊介绍:
The journal provides an international forum for the publication of theory, algorithms, analysis and experiments across the broad area of information retrieval. Topics of interest include search, indexing, analysis, and evaluation for applications such as the web, social and streaming media, recommender systems, and text archives. This includes research on human factors in search, bridging artificial intelligence and information retrieval, and domain-specific search applications.